CSME 206A — Natural Language & Speech Processing Spring Semester

Lecture 13: Parts of Speech Tagset and Statistical-based Tagging
Lecturer: K.R. Chowdhary : Professor of CS

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

13.1 Part of Speech Tagset

There are standard eight parts of speech (POS) in English: noun, verb, pronoun, preposition, adverb,
conjunction, participle, and article. The POS are also called word classes, morphological classes, or lexical
tags. They are important as they give significant amount of information about word and its neighbors. It
is true for nouns and verbs. Also, when we have identified, e.g., possessive pronouns my, your, his, her, its
and personal pronouns I, he, you, me, we are able to identify the vicinity words.

The POS are also used for Information retrieval, as knowing POS can help us as which morphological affixes
it can have. They can also help in selecting important words, like, nouns, from the text.

Some examples of POS are as follows:

e Prepositions: on, under, over, near, by, at, from, to, with
e Pronouns: she, who, I, others
o Wh-pronouns: what, who, whom, why, where

e Conjunctions: and, but, or, as, if, whom

Auziliary verbs: can, may, should, is, are

Participle: up, down, on, off, in, out, at, by

Words can be analysed into parts-of-speech, which are major lexical syntactic categories, like, as N (Noun),
V (Verb), A (Adjective), P (Preposition), or more minor categories, such as Comp (Complementizer), Det
(Determiner), Deg (Degree intensifier), and so on. Some examples are as follows:

N: car, cars; woman, women...

V: thinks, thinking; sold, selling...
Adj: old, older, oldest; pedantic...
Prep: in, on, with(out), although...
Comp: that, if...

Det: the, a, those, that, some...
Deg: so, very...

The N, V, A are the categories of the contentful or open-class vocabulary. Membership of these categories
is large (as a glance at any dictionary will tell you) and open-ended (people invent new words (neologisms)

13-1

13-2 Lecture 13: Parts of Speech Tagset and Statistical-based Tagging

like, fax, biro) and often open-class words belong to more than one category (e.g. storm can be a noun or
verb, and morphologically-related stormy is an adjective); that is, they are ambiguous in terms of lexical
syntactic category. (Some words are ambiguous at the level of lexical semantics though not in terms of lexical
syntactic category e.g. match, N: game vs. lighter). Adverbs also form a large open-ended class, but they
are highly related to adjectives and often formed by adding the suffix +ly to adjectives (badly, stormily, etc)
so we would not give them a separate category but treat them as A[+Adv].

The other categories are those of functional or closed-class words, which typically play a more ‘grammatical’
role with more abstract meaning. Membership of these categories is smaller and changes infrequently. For
example, prepositions convey some meaning but often this meaning would be indicated by case endings or
inflection on words in other languages and sometimes there are English paraphrases which dispense with
the preposition: “Kim gave a cat to Sandy” / “Kim gave Sandy a cat.” Degree intensifiers in adjectival or
adverbial phrases very beautiful(ly) convey a meaning closely related to the comparative suffix more beautiful
/ taller. Determiners, such as the (in)definite articles (the, a), demonstrative pronouns (e.g. this, that) or
quantifiers (e.g. some, all) help determine the reference of a noun (phrase) — quite frequently articles are
absent or indicated morphologically in other languages (hence the common non-native speaker error of the
form: “please, where is train station?”).

The complete set of lexical syntactic categories (for English) depends on the syntactic theory, but the smallest
sets contain around 20 categories (almost cor- responding to traditional Greek/Latin-derived parts-of-speech)
and the largest thousands.

Often words are ambiguous between different lexical categories. What are the possibilities for broken,
purchase, that and can? There are diagnostic rules for determining the category appropriate for a given
word in context; e.g., if a word follows a determiner, it is a noun, as in, “the song was a hit.” If a word
precedes a noun, is not a determiner and modifies the noun’s meaning, it is an adjective. For example, “the
smiling boy laughed.” Can you think of an exception to the last rule? These rules and categorical distinctions
can be justified by doing distributional analysis both at the level of words in sentences. The process is more
long-winded, though. The following template schemata are enough to get you to the rules above, which are
abstractions based on identifying the classes, like noun, determiner, and adjective

1. = boy(s) can run
2. — older boy(s) can run

3. The — boy(s) can run

4. The older — can run

There are other ways to make these distinctions too. For example, nouns often refer to fairly permanent
properties of individuals or objects, boy, car, etc., verbs often denote transitory events or actions, smile,
kiss, etc. However, there are many exceptions: storm, philosophy, weigh, believe, etc. Linguists have striven
to keep syntax and semantics separate and justify syntactic categories on distributional grounds, but there
are many interactions between meaning and syntactic behavior.

13.1.1 Penn Treebank Tagset

Parts-of-speech tagging or tagging in short is process of assigning a parts-of-speech or other lexical class
marker to each word in a given text. The tagging is also called tokenization in terms of computer based
processing for natural language text. The parts-of-speech tagging (grammatical tagging) or disambiguation
of word-category, is a process of marking-up word in a text (corpus) corresponding to a particular POS. This

Lecture 13: Parts of Speech Tagset and Statistical-based Tagging 13-3

is carried out based on its definition as well as its context!. Various POS in English language are: noun,
verb, adjective, adverb, pronoun, preposition, conjunction, and interjection.

There are tag-sets used for parts of speech Tagging. The Table 13.1 shows the Penn Treebank tagset. The
tagged version of the Penn Treebank corpus is produced in two stages, using a combination of automatic
POS assignment and manual correction.

Table 13.1: Penn Treebank POS tagset

Tag | Description

1 CcC Conjunction, coordinating

2 CD Numeral, cardinal

3 DT Determiner (e.g., a,an, the, this, that, those)
4 EX existential there

5 FW Foreign word

6 IN Preposition (e.g., of, by, in)

7 JJ Adjective (e.g., yellow, other)

8 JIR Adjective, comparative (e.g., bigger)
9 JJS Adjective, superlative (e.g., biggest)
10 LS List item marker

11 | MD Modal auxiliary (can cannot could couldn’t)
12 | NN Noun (Rajan)

13 | NNP Proper noun (e.g., IBM)

14 NNPS Proper noun, plural (e.g., Indians)
15 | NNS Plural noun (e.g., students)

16 PDT Pre-determiner

17 POS Genetive marker

18 PRP Pronouns, personal

19 PP$ Possessive pronoun

20 | RB Adverb (e.g., very)

21 RBR Adverb, comparative

22 RBS Adverb, superlative

23 RP ”t0” as preposition

24 SYM Symbol

25 TO to go ‘to’

26 UH Interjection

27 | VB Verb (e.g., eat)

28 | VBD Verb past tense (e.g., ate)

29 VBG Verb, present participle, or gerund
30 VBP Verb, preset tense, not 3rd person singular
31 VBN Verb, Past participle (e.g., taken)
32 | VBZ Verb 3rd pers. singular (e.g., eats)
33 | WDT wh-detemining (e.g., which)
34 | WP wh-Pronoun (e.g., who, when)
35 | WPS$ Possessive wh-pronoun (e.g., whose)
36 | WRB wh-Adverb (e.g., where, when)

Following are the examples of tagged sentences:

LContext: Relationship with adjacent and related words in a sentence, or phrase, or a paragraph.

13-4 Lecture 13: Parts of Speech Tagset and Statistical-based Tagging

Sentence: “Book that flight.”
Tag Sequence: VB DT NN.

Sentence: “Does that flight serve lunch?”
Tag sequence: VBZ DT NN VB NN ?

We note the ambiguous word “book” in the above example, which makes it difficult to resolve the meaning
of the sentence. The POS also resolves the ambiguity using a Corpus (like Brown corpus, or Penn Treebank
tag-set). The disambiguation is carried out based on frequency of use of those words as well based on the
context in that sentence.

Using the tag-set and corpus (tagged collection of sentences) it is possible to tag the words in a sentence
and resolve the POS. The following example is a longer sentence with tags:

The/DT grand/JJ jury /NN commented/VBD on/IN a/DT number/NN of/IN other/JJ topics/NNS.

13.1.2 Libraries for Tokenization, Stemming and Tagging

These tools have built-in functions to perform number of commonly used tasks, which can be directly called,
or using these script can be written to perform more complex jobs of NLP and speech processing. For
example, for NLP, they can tokenize the given text, can do stemming and POS (parts of speech) tagging,
can find out word frequencies in given documents, parsing of NL sentences, etc. These inputs can help
to compute, for example, tf X idf (term frequency * inter-document frequency), which can be helpful in
IR (Information Retrieval), IE (Information Extraction), text classification, etc. In the following part, we
discuss some such tools, which are either open source or they can be obtained on request from respective
research laboratories.

The NLTK (Natural Language Toolkit) is a collection of Python libraries and programs for symbolic and
statistical natural language processing.

The POS tagging is carried out as part of computational linguistics, using some algorithms. These algorithms
associate discrete terms, as well as hidden parts of speech, in accordance with a set of descriptive tags. POS-
tagging algorithms fall into two distinctive categories: rule-based and stochastic based. For example, Brill’s
tagger, one of the first and most widely used English POS-taggers, makes use of rule-based algorithms.

Consider that tasks of stemming and parts-of-speech (POS) tagging are independent, and both operate on
sequences of tokens. If the stemming task is done first, the information required for POS tagging is lost. If
tagging task is performed first, the stemming process must be able to skip over the tags. If these two tasks are
done independent to each other, it become difficult to align the resultant texts. Hence, as the combinations
of tasks increase, it becomes extremely difficult to manage the data. To address this problem, NLTK version
1.4 onward comes with a new architecture where tokens are based on Python’s native dictionary datatype,
such that the tokens can have an arbitrary number of named properties. The Tag and Stem are the examples
of these properties. The NLTK allows for even whole sentence and document to be represented as single
token, with Sub-tokens attribute that hold sequences of smaller tokens.

A parse-tree can also be treated as a token, which have special property/attribute of Children. The benefit
of this type of architecture in NLTK is that, it unifies many different data types, and allows distinct tasks
to be run independently. Of course, this architecture comes with an overhead for programmers, because the
program need to keep track of a growing number of property names.

Lecture 13: Parts of Speech Tagset and Statistical-based Tagging 13-5

Example 1 Determining Part of speech of a sentence, uisng Python NLTK Library.

$ python

python 3.7.6 (default, Jan 8 2020

>>> import nltk

>>> from nltk.corpus import brown

>>> from nltk import tokenize

>>> text="This is a simple sentence, that any one can

write."

>>> tokens=nltk.word_tokenize(text)

>>> print(tokens)

[’This’, ’is’, ’simple’, ’sentence’, ’,’, ’that’, ’any’,
’one’, ’can’, write’, ’.’]

>>> tagged=nltk.pos_tag(tokens)

>>> print (tagged)

[(°This’,’DT’), (’is’, ’VBZ’), (’a’, ’DT’),

(’simple’, °JJ’), (’sentence’, °NN’), (’,’, 7,°),

(’that’, ’IN’), (’any’, ’DT’), (’omne’, ’CD’),

(’can’, °MD’), (’write’, ’VB’), (°.’, ’.°)]

>>>

Example 2 Parts-of-speech tagging.

>>> import nltk
>>> text=nltk.word_tokenize("Part of speech tagging and POS
tagger")
>>> text
[’Part’, ’of’, ’speech’, ’tagging’, ’and’, ’P0S’, ’tagger’]
>>> nltk.pos_tag(text)
[(’part’, ’NN’), (’of’, ’IN’), (’speech’, ’NN’),
(’tagging’, °NN’), (’and’, °CC’), (°P0S’, ’°NNP’), (’tagger’,
’NN’)]

13.2 Statistical-based POS tagging

The appeal of stochastic techniques over traditional rule-based techniques comes from the ease with which the
necessary statistics can be automatically acquired and the fact that very little handcrafted knowledge need
be built into the system. In contrast, the rules in rule-based taggers are usually difficult to construct and are
typically not very robust. Stochastic taggers have obtained a high degree of accuracy without performing any
syntactic analysis on the input. These stochastic part of speech taggers make use of a Markov model which
captures lexical and contextual information. The parameters of the model can be estimated from tagged
or untagged text. Once the parameters of the model are estimated, a sentence can then be automatically
tagged by assigning it the tag sequence which is assigned the highest probability by the model. Performance
is often enhanced with the aid of various higher level pre- and post-processing procedures or by manually
tuning the model.

Creating a statistical tagger first requires a tagged corpus — a text or set of texts in which every word has
been assigned its correct tag by hand. The tagged corpus is then divided into two disjoint sets of sentences,
a large set used for “training” — collecting the statistics needed by the tagger-and a smaller set for “testing”
— determining how well the tagger can find the correct tag sequence.

13-6 Lecture 13: Parts of Speech Tagset and Statistical-based Tagging

A traditional single tagger is a kind of tagger that returns the tag sequence t1, maximizing P(t1,|w1,),
where wy, is a sequence of n words and t;, are the corresponding n tags. To put this into words, for a
sentence of length n the tagger tries to find the tag sequence ¢, that has the highest probability given
the words of the sentence wj ,. In fact, it finds this sequence using the standard Markov-model Viterbi
algorithm.

The Second approach is a tagger that computes P(t;|w;) for each tag t;. This differs from the earlier
tagger in that the first finds a tag sequence for the entire sentence “all at once”, while the second looks at
each position in the sentence and computes the probability for each possible tag for that word. This kind of
tagger is better if one wants to find multiple tags for a given word. For example, for the sentence, “The can
will rust”, the tagger computes the probability that “will” is a noun, that it is a modal, etc. Thus one knows
not just the most probable part of speech, but also the second most probable, etc. We also know how great
the difference is between the first choice and the second, the second and third, etc. So while the first tagger
returns what it considers the best overall tag sequence, the second tagger can identify alternative tags at a
position with tag probabilities close to the best.

The third kind of the statistical tagger is an “all tagger” that simply returns all tags with non-zero probability
for that word. E.g., for “will” it returns “modal-verb”, “noun”, etc.

All the taggers share the same probabilistic model, that is, the same way of computing the probabilities of
tag sequences given the words of the sentence. The model is based upon the reasonably standard bigram
tagging model:

argmazy, ,, [[Plwilt:) P(t:[ti—1). (13.1)

=1

Here argmazy, , says to find the tag sequence t;, that maximizes the quantity that follows. Within the
product, for each tag t; we compute the product P(w;|t;)P(t;|t;—1). The first of these terms, P((w;|t;),
is often called “word model” in that it causes the tagger to prefer tags that are common for the word in
question. The second term, P(t;|t;—1), is called the “tag-context model” as it tends to make the tagger to
prefer tags that are likely to come after the tag for the previous word.

It is the responsibility of the training phase to collect these two kinds of probabilities. However, a common
problem for statistical taggers is that the set of examples found in the training data is not exhaustive, so that
in the test data the tagger encounters unforeseen situations. A typical case is when the tagger encounters a
word it has not previously seen. In this case P(w;|t;), the probability of the word given the tag, is zero for
all possible tags and the tagger “blows up”. The solution is to “smooth” the data collected in the training
phase so that these situations have not zero probability, but rather some low probability, presumably based
upon some kind of auxiliary evidence. One of the resource as Corpus is Brown Corpus, which can be used
for training.

For those words not found in the Corpus, the POS can be found by other means, e.g., if the word ends with
“-ed”, it is likely to be a verb, if it is “-ly” is is adverb, etc. Note that, this has been based on the last two
letters of the word to be tagged. Similarly, some more empirical solutions can be the base for words not
found in the Corpus.

The Unigram Tagger is a statistical tagger that assigns the most likely tag to the word based on the training
corpus. To identify the most likely tag for each word, a unigram tagger counts the frequency of tags for each
word in the training corpus. The default tag noun is used for unseen words. The unigram POS tagger is
simple and fast, and it is usually used as a baseline tagger for rule-based approaches.

Lecture 13: Parts of Speech Tagset and Statistical-based Tagging 13-7

13.2.1 Hidden Markov Model

The HMM (Hidden Markov Model) is based on augmenting the Markov chain (see section ??, page no. ?7).
The Markov chain model tells us about probability of sequences of random variables — the states, each of
which can take on values from some set. These sets can be symbols, or words, or tags. A Markov chain
makes a very strong assumption that if we want to predict the future in the sequence, all that matters is the
current state. Considering the application of Markov chain for POS tagging, there for what should matter
is current word (or tag) to predict the next word (or tag), and we do not need to consider all the previous
words or tags.

But, this Markov chain is useful when we need to compute probabilities for a sequence of observable evens.
However, many times the events we are interested are hidden and are not observable directly, e.g., the POS
tags of words in a sentence. In fact, we observe the words, and then we infer the tags from word sequence.
These tags are hidden because they are not observable. The HMM allows us to compute the probabilities of
hidden events (tags) based on the probabilities of the observed events, i.e., the words. The HMM is covered
in detail in section ?? (page no. ?77?), and here we will consider only its application is determination of POS
tags of words.

A Hidden Markov Model (HMM) tagger assigns POS tags by searching for the most likely tag for each word
in a sentence (similar to a unigram tagger). Unlike with the unigram tagger, an HMM tagger detects a tag
sequence for a sentence as a whole, instead of assigning a tag for each word independently. First-order and
second-order HMM taggers are usually called Bigram and Trigram taggers, respectively.

Given a sentence wj ...wy,, an HMM-based tagger chooses a tag sequence ?;...t,, that maximizes the following
joint probability:

P(tl...tn, wl...wn) = P(w1...wn|t1...tn)P(t1...tn).

A HMM comprises following components:

[a;;], the matrix of transition probabilities, where i, j are states,

[bi,;] : probabilities of observable output, 4, j are states.

A
B
IT = [m;]: the initial probabilities of events, 7 is state,
V' set of output labels, |V| = m, and

S: the set of states, |S| = n.
With following additional definitions:
a;; = P(sy = jlsi—1 = 1)
bij(v) = P(Vi, = v|si_1 =1i,8, =)
Thus, a HMM is A = (S, V, A, B, 7).

For POS tagging, the A matrix is tag transition probabilities P(¢;|t;—1), which represent the probability
of occurring of tag as t;, given the previous tag ¢;—1). For example, in the sentence “The can will rust”,

13-8 Lecture 13: Parts of Speech Tagset and Statistical-based Tagging

(table ??, page no. ?77?), the probability of tag t; = “model-verb” for the word w;=%“will” is much higher
given that the tag t;—1 = “noun” (for w;—; = “can”). And, in the phrase “The can”, given that “the” is an
article, the probability of “can” as noun is very high compared to it being model-verb or verb.

We compute the maximum likelihood estimate of this transition probability by counting, out of the times
we see the first tag in a labeled Corpus, how many times the tag has appeared in the labeled Corpus, and
how many times the first tag is followed by second tag, i.e.

C(ti—1,t;)

P(tilti—1) = m,

(13.2)

where C' stands for count.

The B (output or emission) probabilities, P(w;|t;), represent the probability, given a tag t;, what is proba-
bility that the tag is associated with the word is w;, i.e.,

C(fi, wi)

(13.3)

It can be easily understood that above equation is not the posterior probability of Bayes rule.

Since the random variables are hidden in the HMM, we need to decode the same through observations. So,
given the sets A and B, defined above, and sequence of observations be O = 010s...07, find the most probable
sequence of states @ = q1¢2...qr, where g; € S. For the POS tagging, the HMM will choose that tag sequence
7 which is most probable given the observable sequence of n words w7, i.e., it maximizes the function:

1 = argmazn P(t7 |[w}). (13.4)

For the computation of above, we make use of Bayes theorem, as follows:

(i) « P(t;)

) (13.5)

o
ly = argmazy

Since the denominator is common in all the computations, and we are only maximizing a function’s output
and not truly computing the probability, hence we can drop the denominator in the above equation, with
effecting

ity = argmaze P(w}[t7) « P(7). (13.6)

The HMM taggers make two more simplifications: first is probability of a word depends only on its own tag,
and is independent of neighboring words and their tags, expressed by:

n

P(wpt?) ~ [[Pwilts). (13.7)
=1

The second assumption is called bigram assumption; as per this the probability of a tag depends only on the
previous tag, rather than the entire sequence of tags:

Lecture 13: Parts of Speech Tagset and Statistical-based Tagging 13-9

n

P(ty) ~ [Ptilti—1). (13.8)

i=1

Substituting the results from equations 13.7 and 13.8 into the original HMM equation 13.6, we get new result
for the expression for HMM as,

' = argmazn P(t7|w}) &~ argmazyn H P(w;|t;) = P(ti|ti—1) (13.9)
i=1
where P(w;|t;) is called B emission probability and P(t;|t;—1) is called A transition probability.
The ThT Tagger (also known as a trigram POS tagger) uses second-order Markov models and considers

triples of consecutive words to simplify the probability computation. In TnT, the tag of a word is determined
by the POS tags of the two previous words.

The Mazimum Entropy (ME) Tagger incorporates more complex features into probabilistic models. Given
a sentence wi...wy, an ME-based tagger models the conditional probability of a tag sequence t;...t,, as:

N
P(ty..tnlwr..wy) = [[P(tile:), (13.10)
i=1
where c1, ...c,, are contexts for each word w;...w,, in the sentence. An ME-based tagger models features as

binary-valued functions representing constraints to compute P(¢;|c;). It will learn the weights of the features
that can maximize the entropy of the probability model using the training corpus.

The POS tagging method uses the algorithm known as HMM (Hidden Markov Model). Based on this
approach we pick up the most likely tag for the given word. For example, the HMM tagger choose the tag
sequence that maximizes the following formula:

P(word | tag) * P(tag | previous n tags) (13.11)
Obviously, this model is n-gram model.

In the following example, we make use of above derived formulas of HMM to compute the POS tag of a word
in a sentence, given the tags of rest of the words.

Example 3 HMM based POS tagger.
Consider the following sentence:
“Secretariat/NNP is/VBZ expected/VBN to/TO race/?? tomorrow/NN.”

Here POS for the word “race” is not given. We understand that “race” can be a verb or noun. Hence, we
need to find out “to/TO race/??”.

13-10 Lecture 13: Parts of Speech Tagset and Statistical-based Tagging

In terms of probability, we want to maximize the probability out of: P(race | VB) «x P(VB | TO) and
P(race | NN)« P(NN | TO).

We apply the equation (13.11) to compute the probabilities, using the probabilities given in the standard
corpus.

The lexical likelihoods from Brown corpus are,

P(race | NN) = 0.00041.
P(race | VB) = 0.00003.

While tag sequence probabilities P(¢;]t;—1) are given as,

P(NN | TO) = 0.021, and

P(VB|TO) = 0.34.

Multiplying the lexical likelihoods with the tag sequence probabilities, we obtain the result as follows:

P(race | VB) « P(VB | TO) = 0.00001
P(race | NN)« P(NN | TO) = 0.000007

Hence, the POS of word “race” is VB.OI

