Operating system concepts

Process Synchronization (Producer-consumer,
critical section, mutex)
Slides Set #10

By Prof K R Chowdhary
JNV University

2023

1/15

Interprocess Communication

> A concurrent process may
be either independent
processes or cooperating
processes.
» Reasons for providing
process cooperation:
» Information sharing.
» Computation speedup.
> Modularity.
» Convenience.

» Cooperating processes
require an interprocess
communication (IPC)
mechanism to exchange
data and information.

» Two fundamental models
of interprocess

communication: shared
memory and message

passing.

Process A

Process B

Message queue

mo | 771,1|

|28

Kernel

(a)

Process A

|

Shared Memory

Process B

|

Kernel

(b)

Figure 1: (a) Message passing, (b)

Shared Memory

2/15

1. Shared-Memory System, 2. Message passing

» Shared Memory:

- Interprocess communication using shared memory requires
communicating processes to establish a region of shared
memory (see Fig. 1).

- The form of the data and the location are determined by these
processes and are not under the operating system’s control.

- Ensure that they are not writing to the same location
simultaneously.

> Message Passing:
- send(A, message) :Send a message to mail box A.
- receive(A, message) :Receive a message from mailbox A

- Sockets: For network communications

3/15

Producer-consumer Problem

P> Processes can execute concurrently or in parallel.
» The concurrent or parallel execution can contribute to issues
involving the integrity of data shared by several processes.

» Consider the bounded buffer (buffer size fixed). This allows
for at most “BUFFERSIZE - 1" items in the buffer.

-:Producer Process code:-

while (true){
/* produce an item in next produced */
while (counter == BUFFERSIZE);
/* do nothing */
buffer[in] = next_produced;
in = (in + 1) % BUFFERSIZE;
counter++;

4/15

Producer-consumer problem...
-:Consumer process code:-

while (true) {
while (counter == 0);

/* do nothing */
next_consumed = buffer[out];
out = (out + 1) % BUFFERSIZE;
counter—--;

/* consume the item in next consumed */

}

We would arrive at this incorrect state because we allowed both
processes to manipulate the variable counter concurrently. (race!)
» Questions: On producer-consumer problem.
- Meaning of "while (counter == BUFFERSIZE);" in producer?
- Is buffer[] global array?
- Are "“in" and “out” global variables?
- Meaning of “while (counter == 0);" in consumer?

5/15

Critical-Section Problem

» Consider a system consisting of n processes {Po, P1, ..., Pr—1}.
» Each process has a segment of code, called a critical section,
in which the process may be changing common variables,..

» Each process must request permission to enter its critical
section.
» The critical section may be followed by an exit section.

do {
--— entry into section --—-
[critical section]
-—- exit from section
remainder code
} while true;

» Questions:
- Give any five examples, where in the operating the
producer-problem occurs?

- What is meaning of entry into critical section?
6/15

Critical-Section Problem...

» A solution to the critical-section problem must satisfy these
requirements:
1. Mutual exclusion.
2. Progress (selection of which goes into critical section cannot
be postponed indefinitely).
3. Bounded waiting (for critical section).

» Questions:

- What operation happens in the critical section?

Examples of critical section in real-life?

What is meaning of mutual-exclusion?

Progress means what?

Difference between point 2 and 3 above?

7/15

Handling Critical-Section in Kernel processes

> Two general approaches are used to handle critical sections in
operating systems: preemptive kernels and nonpreemptive
kernels.

» Obviously, a nonpreemptive kernel is essentially free from race
conditions on kernel data structures

P> a preemptive kernel is more suitable for real-time
programming,

» Peterson’s Solution (algorithm) for handling critical section:
SW solution

//whose turn it is to enter criti.sec. (1 -> P1, 2->P2)
int turn;

//flag[0] =true; -> PO is ready to enter critical section
boolean flag[2];

8/15

Handling Critical-Section in Kernel processes...

P Peterson’s solution requires the two processes to share two
data items:
do {

flagl[i] = true;
turn = j;
while (flagl[j] && turn == j);
critical section
flag[i] = false;
remainder section
} while (true);

» The variable turn indicates whose turn it is to enter its critical
section. That is, if turn == i, then process Pi is allowed to
execute in its critical section.

» Question:

- What two data items are shared between two processes?
- How it is ensured by above code that only one process enters
the critical section?

9/15

Handling Critical-Section in Kernel processes...

» We now prove that this solution is correct. We need to show
that:

1. Mutual exclusion is preserved.
2. The progress requirement is satisfied.
3. The bounded-waiting requirement is met.

» To show properties 2 and 3 above, note that a process Pi can
be prevented from entering the critical section only if it is
stuck in the while loop with the condition flag[j] == true &&
turn == |;

10/15

Mutex Locks

> The simplest of these tools

is the mutex lock. (In fact,
the term mutex is short for
mutual exclusion.)

A mutex lock has a
boolean variable available
whose value indicates if the
lock is available or not. If
the lock is available, a call
to acquire() succeeds, and
the lock is then considered
unavailable.

The definition of acquire()
is as follows:

acquire() {

while (lavailable);
/* busy wait */
available = false;
}
do {
acquire_lock()
critical section
release_lock()
remainder section
} while (true);

The definition of release()
is as follows:

release() {
available = true;

11/15

Mutex Locks...

>

Questions:

What are the disadvantages of mutex lock (called also
spinlock)?

What is meaning of "spinlock”?
“Busy waiting wastes CPU cycles” means what?
Are there possible advantages of spinlocks?

Does mutex prevent the race condition?

12/15

Building a mutex Lock

» Goals of a lock implementation:
- Mutual exclusion (obviously!)

- Fairness: all threads should eventually get the lock, and no
thread should starve

- Low overhead: acquiring, releasing, and waiting for lock
should not consume too many resources

» Implementation of locks are needed for both user-space
programs (e.g., pthreads library) and kernel code

» Implementing locks needs support from hardware and OS
» Questions:
- What are goals of implementation of mutex lock?

- What are functions of “available”, "acquire” and “release”?

13/15

Critical section and locks

>

Consider update of shared variable balance in C code with
operation:

balance = balance + 1;
We can use a special lock variable to protect it

lock_t mutex; //some globally allocated lock ‘mutex’

lock (&mutex) ;
balance = balance +1;
unlock (&mutex) ;

All threads accessing a critical section share a lock
(function())

Only one threads succeeds in locking, i.e., owner of lock

Other threads that try to lock cannot proceed further until
lock is released by the owner

pthreads library in Linux provides such locks

14/15

Is disabling interrupts enough?
» Is this enough?

void lock(O{
DisableInterrupts();
}

void unlock(){
EnableInterrupts();
}
> No, not always!
- Many issues here:
- Disabling interrupts is a privileged instruction and program
can misuse it (e.g., run forever)
- Will not work on multiprocessor systems, since another thread
on another core can enter critical section

P This technique is used to implement locks on single processor
systems inside the OS

- Need better solution for other situations
15/15

