
Operating system concepts
Process Synchronization (deadlocks handling,

detection, prevention, avoidance)
Slides Set #12

By Prof K R Chowdhary

JNV University

2023

1/9

 



Semaphores: Used to solve synchronization problems

I In a multiprogramming environment, several processes may
compete for a finite number of resources.

I Sometimes, a waiting process is never again able to change
state, because the resources it has requested are held by other
waiting processes. This situation is called a deadlock.

I Although some applications can identify programs that may
deadlock, Operating systems typically do not provide
deadlock-prevention facilities,

I Questions:

- How, you can prevent the occurrence of deadlock?

- Is there possibility of deadlock in batch type of OS?

- Is it possible in DOS?

2/9



System Model
I A system consists of a finite number of resources to be

distributed among a number of competing processes.

I If a process requests an instance of a resource type, the
allocation of any instance of the type should satisfy the
request.

I Various synchronization tools are mutex locks and
semaphores. A lock is typically associated with protecting a
specific data structure.

I A process must request a resource before using it and must
release the resource after using it.

I A set of processes is in a deadlocked state when every process
in the set is waiting for an event that can be caused only by
another process in the set.

I To illustrate a deadlocked state, we can consider a system
with three CD RW drives.

I Deadlocks may also involve di↵erent resource types.
3/9



Deadlock Characterization and Necessary Conditions

I In a deadlock, processes never finish executing, and system
resources are tied up, preventing other jobs from starting.

I Conditions of deadlock:
1. Mutual exclusion: At least one resource must be held in a

nonsharable mode; that is, only one process at a time can use
the resource.

2. Hold and wait: A process must be holding at least one
resource and waiting to acquire additional resources

3. No preemption: Resources cannot be preempted;
4. Circular wait.

I Questions:
1. What are the conditions of deadlock? Explain each one of

them.
2. What will be the problems, if one or more processes are

deadlocked?
3. If operating system has no provision of deadlock handling,

what you will do if you are user of that OS?

4/9



Resource-Allocation Graph

I Deadlocks can be described
in terms of a directed
graph, called a system

resource-allocation graph

G = (V ,E ).
I A directed edge from

process Pi to resource type
Rj is denoted by Pi ! Rj ;

I Pictorially, we represent
each process Pi as a circle
and each resource type Rj

as a rectangle.
I When process Pi requests

an instance of resource
type Rj , a request edge is
inserted in the resource
allocation graph.

I The sets P , R , and E :
P = {P1,P2,P3},
R = {R1,R2,R3,R4},
E = {P1 ! R1,P2 !
R3,R1 ! P2,R2 !
P2,R2 ! P1,R3 ! P3}.

Figure 1: Resource allocation
Graph.

5/9



Resource-Allocation Graph..

I Resource instances: e.g., One instance of resource type R1

I Process states: Process P1 is holding an instance of resource
type R2 and is waiting for an instance of resource type R1.
Others...

I Given the definition of a resource-allocation graph, it can be
shown that, if the graph contains no cycles, then no process in
the system is deadlocked.

I If each resource type has several instances, then a cycle does
not necessarily imply that a deadlock has occurred.

6/9



Resource-Allocation Graph..

I Cycle: P2 ! R3 ! P3 !
R2 ! P2.

Figure 2: Resource allocation
Graph with deadlock.

I Cycle: P1 ! R2 ! P2 !
R3 ! P3 ! R2 ! P1.
Processes P1,P2,P3 are
deadlocked. The P2 is

waiting for resource R3

(held by process P3), ...

Figure 3: Resource allocation
Graph with deadlock.

I There is a cycle: P1 !
R1 ! P3 ! R2 ! P1, but
there will not be dead lock.
Why?

7/9



Methods for Handling Deadlocks

I We can deal with the deadlock problem in one of three ways:
1. We can use a protocol to prevent or avoid deadlocks,
2. We can allow the system to enter a deadlocked state, detect it,

and recover.
3. We can ignore the problem altogether

I To ensure that deadlocks never occur, the system can use
either a deadlock-prevention or a deadlock-avoidance scheme.

I Deadlock avoidance requires that the operating system be
given additional information in advance concerning which
resources a process will request and use during its lifetime.

I The system can provide an algorithm that examines the state
of the system to determine whether a deadlock has occurred
and an algorithm to recover

I Q. What is di↵erence between prevention and avoidance of
deadlock?

8/9



Deadlock Prevention
For a deadlock to occur, each of the four necessary conditions
must hold.
I Mutula Exclusion. The mutual exclusion condition must

hold.
I Hold and Wait. To ensure that the hold-and-wait condition

never occurs in the system
- An alternative protocol allows a process to request resources
only when it has none.

- To illustrate the di↵erence between these two protocols, we
consider a process that copies data from a DVD drive to a file
on disk, sorts the file, and then prints the results to a printer.

- The second method allows the process to request initially only
the DVD drive and disk file.

- Both these protocols have two main disadvantages. First,
resource utilization may be low, since resources may be
allocated but unused for a long period.

- Starvation is possible. A process that needs several popular
resources may have to wait indefinitely, 9/9


