
Operating system concepts

Process Synchronization (deadlocks detection, prevention,

avoidance)

Slides Set #13

By Prof K R Chowdhary

JNV University

2023

1/6

 



Deadlock Prevention: No Preemption, Circular Wait

3. No Preemption. The third necessary condition for

deadlocks to occur is: there be no preemption of resources

that have already been allocated. To ensure that ...

I Alternatively, if a process requests some resources, we first

check whether they are available. If they are, we allocate

them. If they are not,...

I This protocol is often applied to resources whose state can be

easily saved and restored later,

I Questions: 1. In what conditions, the preemption of resources

cannot be applied? 2. Explain the preemption protocol of

deadlock removal, in detail.

4. Circular Wait. The fourth and final condition for

deadlocks is the circular-wait condition. To ensure that it

does not hold is impose total order of resources.
We define a one-to-one function f : R ! N

2/6



Deadlock Avoidance

I * Deadlock-prevention algorithms ensures that at least one
of the necessary conditions for deadlock cannot occur.
Side e↵ects?

I 1. A method for avoiding deadlocks is to require additional
information for example, in a system with ”one tape drive

and one printer,” the system...

I 2. A deadlock-avoidance algorithm dynamically examines the

resource-allocation state to ensure that a circular-wait

condition can never exist.

I A state is safe if the system can allocate resources to each

process (up to its maximum) in some order and still avoid a

deadlock.

I Questions: 1. What is disadvantages of method * above? 2.

What are the di↵erent possible mechanisms for deadlock

avoidance?

3/6



Deadlock detection

I If a system does not employ either a deadlock-prevention or a

deadlock- avoidance algorithm, then a deadlock situation may

occur. In this environment, the system may provide:

1. An algorithm that examines the state of the system to

determine whether a deadlock has occurred, and

2. An algorithm to recover from the deadlock.

4/6



Recovery from deadlock

When a detection algorithm determines that a deadlock exists,

several alter- natives are available.

1. Simplest solution is is to inform the operator that a deadlock

has occurred and to let the operator deal with the deadlock

manually.

2. Another possibility is to let the system recover from the

deadlock automatically.

I Two options for breaking a deadlock: 1. simply to abort one

or more processes to break the circular wait. 2. preempt some

resources from one or more of the deadlocked processes.

I Abort all deadlocked processes. This method clearly will

break the deadlock cycle, but at great expense.

I Abort one process at a time until the deadlock cycle is

eliminated.

I Questions: 1. “Abort all deadlocked processes” method has

what disadvantages?

5/6



Recovery from deadlock: Resource preemption

If preemption is required to deal with deadlocks, then three issues

need to be addressed:

I Selecting a victim. Which resources and which processes are

to be preempted?

I Rollback. If we preempt a resource from a process, what

should be done with that process?

I Starvation. How do we ensure that starvation will not occur?

That is, how can we guarantee that resources will not always

be preempted from the same process?

6/6


