
Operating system concepts
Introduction to Processes

By Prof K R Chowdhary

JNV University

2023

1/20



Process State Transitions

Figure 1: Process: State transition diagram

2/20



Processes: The Process Abstraction

OS provides process abstraction

▶ When you run an .exe file in windows (or a.out in Linux), the
OS creates a process, i.e., a running program

▶ The operating system is using a unique id for every process to
keep track of all processes.

▶ OS timeshares CPU across multiple processes: virtualizes CPU
▶ OS has a CPU scheduler that picks one of the many active

processes to execute on a CPU
▶ Policy: which process to run?
▶ Mechanism: how to “context switch” between processes?

3/20



What constitutes a process?

Each process comprises following:

▶ Code & data (static)

▶ A unique identifier (PID) and PPID. (Linux command is: $ ps)

▶ Memory image

▶ Stack and heap (dynamic)
▶ CPU context: registers

▶ Program counter
▶ Current operands
▶ Stack pointer

▶ File descriptors
▶ Pointers to open files and devices

4/20



How does OS create a process? ‘fork()’ command.

▶ Allocates memory and creates memory image
▶ Loads code, data from disk exe
▶ Creates runtime stack, heap

▶ Opens basic files
▶ STD IN, OUT, ERR

▶ Initializes CPU registers
▶ PC points to first instruction

5/20



States of a process

▶ Running : currently
executing on CPU

▶ Ready : waiting to be
scheduled

▶ Blocked : suspended, not
ready to run
▶ Why? Waiting for some

event, e.g., process
issues a read from disk

▶ When is it unblocked?
Disk issues an interrupt
when data is ready

▶ New process: being
created, yet to run

▶ Dead process: terminated

Figure 2: More than one processes
in RAM

6/20



OS data structures

▶ OS maintains a data structure (e.g., list) of all active
processes

▶ This information about each process is stored in a process
control block (PCB)
▶ Process identifier (pid)
▶ Process state
▶ Pointers to other related processes (i.e., parent process: ppid)
▶ CPU context of the process (saved when the process is

suspended)
▶ Pointers to memory locations
▶ Pointers to open files

7/20



Example: Process States

Table 1: Tracing process state: CPU and I/O

Time Process A Process B Notes

1 Running Ready
2 Running Ready
3 Running Ready Process A initiates I/O
4 Blocked Running Process A blocked,
5 Blocked Running so Process B runs
6 Blocked Running
7 Ready Running I/O done
8 Ready Running Process B now done
9 Running exited
10 Running exited Process A now done
11 exited exited

8/20



Process context switching (PCB=Process Control Block)

Figure 3: Process context switching

9/20



Process Concept

▶ From a user’s point of view, the operating system is there to
execute programs:
▶ on batch system, refer to jobs
▶ on interactive system, refer to processes
▶ (we will use both terms fairly interchangeably)

▶ Process ̸= Program:
▶ a program is static, while a process is dynamic
▶ in fact, a process is “a program in execution”

▶ (Note: “program” here is pretty low level, i.e. native machine
code or executable)

▶ Process includes:

1. code section
2. program counter
3. stack
4. data section

▶ Processes execute on virtual processors

10/20



Process Concept

Figure 4: Process states

▶ As a process executes, it changes state:
▶ New : the process is being created
▶ Running: instructions are being executed
▶ Ready : the process is waiting for the CPU (and is prepared to

run at any time)
▶ Blocked : the process is waiting for some event to occur (and

cannot run until it does)
▶ Exit: the process has finished execution.

▶ The operating system is responsible for maintaining the state
of each process.

11/20



Process Concept
A program of infinite loop, compiling (gcc), running program (in
foreground), running in background (by &), process status (ps),
kill process (kill command)

Figure 5: Process creation, run, kill 12/20



Process related system calls (in Unix)

▶ fork() creates a new child process
▶ All processes are created by forking from a parent
▶ The init process is ancestor of all processes

▶ exec() makes a process execute a given executable

▶ exit() terminates a process

▶ wait() causes a parent to block until child terminates

▶ Many variants exist of the above system calls with different
arguments

13/20



What happens during a fork()?

▶ A new process is created by
making a copy of parent’s
memory image

▶ The new process is added
to the OS process list and
scheduled

▶ Parent and child start
execution just after fork
(with different return
values)

14/20



What happens during a fork()?
fork() return an int value as follows:
▶ Zero: if it is the child process (the process created).
▶ Positive value: if it is the parent process.
▶ Negative value: if an error occurred.

15/20



What happens during a fork()?...

▶ In the example above (proc1.c), the fork() function is used is
once.

▶ The process will be forked in the form of 2n processes. (n is
number of fork() system calls)

▶ Below are steps for compilation and running of proc1.c

16/20



How a function call in C works?
A function call saves (pushes) the contexts (registers, PC in
stack), loads PC by address of function program. Before return
from function, pops stack and reloads the registers and PC

17/20



What happens during a fork()?...
fork() is like a function call, but very different!!

18/20



What happens during a fork()?...
Actually, instead of putting the fork() commands in sequence, it is
called with conditions.

19/20



What happens during a fork()?...
▶ The “printf{Parent..}” is printed by parent process before

fork() is executed. The x = fork() execution returns a value 0
to x . So, “child pid < 0” is false.

▶ if fork() fails, it returns −1.

▶ The last lines in program, which are due to parent, may
execute before even the child is executed,

20/20


