
Operating system concepts
Process Scheduling

Slides Set #5

By Prof K R Chowdhary

JNV University

2023

1/16

Why (context-) switch between processes?

▶ In case OS leaves a process and goes into kernel mode, it
cannot return back to the same process it has left, because:
▶ that process might have exited or terminated,
▶ process has made a blocking system call (e.g., doing IO).

▶ Sometimes, the OS does not want to return back to the same
process, because:
▶ The process has run for too long, or
▶ Must timeshare CPU with other processes.

▶ In above casse the OS performs a context switch to switch
from one process to other.

2/16

Scheduling Criteria (deciding the order of execution)
A variety of metrics may be used:

1. CPU utilization: the fraction of the time the CPU is being
used (and not for idle process!)

2. Throughput: Number of processes that complete their
execution per time unit.

3. Turnaround time: amount of time to execute a particular
process.

4. Waiting time: amount of time a process has been waiting in
the ready queue.

5. Response time: amount of time it takes from when a request
was submitted until the first response is produced (in
time-sharing systems)

6. Sensible scheduling strategies might be:
▶ Maximize throughput or CPU utilization, and
▶ Minimize average turnaround time, waiting time or response

time. Also need to worry about fairness and liveness.

3/16

The OS scheduler (i.e. process scheduler)

OS scheduler has two parts:

▶ Policy to pick which process to run next, and

▶ Mechanism to switch to that process.

Non-preemptive (cooperative) schedulers are polite:

▶ Switch only if process blocked or terminated.

Preemptive (non-cooperative) schedulers can switch even when
process is ready to continue:

1. CPU generates periodic timer interrupt,

2. After servicing interrupt OS checks if the current process has
run for too long.

4/16

What resources are we trying to optimize?

▶ Maximize utilization (= fraction of time CPU is used)

▶ Minimize average turnaround time (= time duration of
process arrival to completion)

▶ Minimize average response time (= time from process arrival
to first scheduling)

▶ Fairness: all processes must be treated equally

▶ Minimize overhead : run process long enough to amortize*
cost of context switch (≈ 1 microsecond)

*=gradually write of the initial cost.

5/16

Types of Process scheduling

▶ First-In-First-out (FIFO), also called FCFS
(First-come-first-served)

▶ Shortest job first (SJF) Scheduling

▶ Shortest Running/remaining Time First (SRTF) scheduling

▶ Round Robin Scheduling

▶ Static Priority Scheduling

▶ Dynamic Priority Scheduling

▶ Schedulers in real systems (e.g., Linux, Multi Level Feedback
Queue) MLFQ

6/16

First-In-First-Out (FIFO)
▶ Also called first-come-first-served
▶ Let three processes arrive at time t=0, in the order P1,P2,P3

▶ Problem: Convoy effect (Convoy Effect is phenomenon
associated with the FCFS algorithm, in which the whole
Operating System slows down due to few slow processes.)

▶ Turn around time tend to be high

7/16

First-In-First-Out (FIFO)...

▶ FCFS depends on order processes arrive, e.g.P1,P2,P3 have
bust time of 25, 4, 7.

▶ So, waiting time for P1 = 0, for P2 = 25, for P3 = 29. so,
average waiting time = (0 + 25 + 29)/3 = 18

▶ If these arrive in the order P3,P2,P1, then wating time for
P1 = 11, for P2 = 7, for P3 = 0, so average waiting time is
11 + 7 + 0)/3 = 6.

▶ First case is poor due to convoy effect

8/16

Shortest job First (SJF)

▶ Optimal when all processes arrive together.

▶ SJF is non-preemptive, so short jobs can still get stuck behind
long ones.

▶ Average time in 1st: (P1,P2,P3), = (20+0+10)=10.

9/16

Shortest Remaining Time First(SRTF)

▶ A Preemptive (?) scheduler

▶ Preempts running task if time left is more than that of new
arrival

10/16

Round Robin (RR)

▶ Every process is executed
for a fixed quantum of time

▶ Slice is big enough to
reduce or pay off for the
cost of context switch

▶ Premeptive

▶ Good for response time and
fairness

▶ Bad for turn around time

11/16

Round Robin (RR)....
A small fixed unit of time called a quantum (or time-slice) is
defined (10-100 millisecc.).

▶ Process at head of the ready queue is allocated the CPU for
one quantum.

▶ When the time has elapsed, the process is preempted and
added to the tail of the ready queue.

Following are good properties of RR:

▶ Fair : if there are n processes in the ready queue and the time
quantum is q, then each process gets 1/nth of the CPU.

▶ Live: no process waits more than (n − 1)q time units before
receiving a CPU allocation.

▶ Typically get higher average turnaround time than SRTF, and
better average response time.

▶ By trickily choosing correct size quantum (q):
▶ q too large ⇒ FIFO
▶ q too small ⇒ context switch overhead too high.

12/16

Static Priority Scheduling

▶ Associates an integer with each process type, e.g.
▶ Priority 0: for internal processes,
▶ Priority 1: interactive processes,
▶ Priority 2: students interactive processes,
▶ Priority 3: batch processes

▶ Allocate CPU to the highest priority process (lowest integer)
▶ How to solve ties?

▶ Round robin with time-slicing
▶ This has Problem: Biased towards CPU intensive jobs
▶ The less priority processes will go starvation

13/16

Dynamic Priority Scheduling

▶ Use same scheduling algorithm, but allow priorities to change
over time.

▶ Simple aging:
▶ processes have a (static) base priority and a dynamic effective

priority.
▶ If a process starves for k-seconds, increment effective priority.
▶ Once a process runs, reset the effective priority.

14/16

Schedulers in Real (actual) Systems

▶ Real schedulers are more complex
▶ For example, Linux uses a Multi-Level Feedback Queue

(MLFQ)
▶ Many queues, in order of priority
▶ Process from highest priority queue scheduled first
▶ Within same priority, any algorithm like RR
▶ Priority of process decays with its age

15/16

Process control block

OS maintains information about
every process in a data structure
called a process control block
(PCB):

▶ Unique process identifier

▶ Process state (Running,
Ready, etc.)

▶ CPU scheduling &
accounting information

▶ Program counter & CPU
registers

▶ Memory management
information

16/16

