Operating system concepts

Process Scheduling
Slides Set #5

By Prof K R Chowdhary
JNV University

2023

1/16

Why (context-) switch between processes?

» In case OS leaves a process and goes into kernel mode, it
cannot return back to the same process it has left, because:

» that process might have exited or terminated,
» process has made a blocking system call (e.g., doing 10).

> Sometimes, the OS does not want to return back to the same
process, because:
» The process has run for too long, or
» Must timeshare CPU with other processes.
» In above casse the OS performs a context switch to switch
from one process to other.

2/16

Scheduling Criteria (deciding the order of execution)
A variety of metrics may be used:

1. CPU utilization: the fraction of the time the CPU is being
used (and not for idle process!)

2. Throughput: Number of processes that complete their
execution per time unit.

3. Turnaround time: amount of time to execute a particular
process.

4. Waiting time: amount of time a process has been waiting in
the ready queue.

5. Response time: amount of time it takes from when a request
was submitted until the first response is produced (in
time-sharing systems)

6. Sensible scheduling strategies might be:

» Maximize throughput or CPU utilization, and
» Minimize average turnaround time, waiting time or response
time. Also need to worry about fairness and liveness.

3/16

The OS scheduler (i.e. process scheduler)

OS scheduler has two parts:
» Policy to pick which process to run next, and
» Mechanism to switch to that process.
Non-preemptive (cooperative) schedulers are polite:
» Switch only if process blocked or terminated.

Preemptive (non-cooperative) schedulers can switch even when
process is ready to continue:

1. CPU generates periodic timer interrupt,

2. After servicing interrupt OS checks if the current process has
run for too long.

4/16

What resources are we trying to optimize?

» Maximize utilization (= fraction of time CPU is used)

» Minimize average turnaround time (= time duration of
process arrival to completion)

» Minimize average response time (= time from process arrival
to first scheduling)

P Fairness: all processes must be treated equally

» Minimize overhead: run process long enough to amortize*
cost of context switch (= 1 microsecond)

*—gradually write of the initial cost.

5/16

Types of Process scheduling

» First-In-First-out (FIFO), also called FCFS
(First-come-first-served)

» Shortest job first (SJF) Scheduling

» Shortest Running/remaining Time First (SRTF) scheduling

» Round Robin Scheduling

» Static Priority Scheduling

» Dynamic Priority Scheduling

» Schedulers in real systems (e.g., Linux, Multi Level Feedback

Queue) MLFQ

6/16

First-In-First-Out (FIFO)
» Also called first-come-first-served
P Let three processes arrive at time t=0, in the order Py, Py, P3
» Problem: Convoy effect (Convoy Effect is phenomenon
associated with the FCFS algorithm, in which the whole
Operating System slows down due to few slow processes.)
» Turn around time tend to be high

P P P
FIFO Simple example
1 T T T T T 17T
0 10 20 30 40 50 60 70 80 9(') 100 150
— Time
FIFO not good P P, P
P T T T 1T] [T T
0 10 20 30 40 50 60 70 80 90 100 150

— Time
7/16

First-In-First-Out (FIFO)...

» FCFS depends on order processes arrive, e.g.P1, P>, P3 have
bust time of 25,4,7.

» So, waiting time for P; = 0, for P, = 25, for p3 = 29. so,
average waiting time = (0 + 25+ 29)/3 = 18

» If these arrive in the order Ps, P, P1, then wating time for
P1 =11, for P, =7, for P3 = 0, so average waiting time is
114+7+0)/3=6.

> First case is poor due to convoy effect

8/16

Shortest job First (SJF)

P, SJF Simple example

Py

inmmmnnns)

sEsnuns|

N T T 11
0 10 20 30 «)506070809A1m 110 120 130 140150

—— Time

SJF not good Py P P

1 P L A P B
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140150

—_ T
Time

» Optimal when all processes arrive together.

» SJF is non-preemptive, so short jobs can still get stuck behind
long ones.

» Average time in 1st: (Py, P2, P3), = (20+0+10)=10.

9/16

Shortest Remaining Time First(SRTF)

P,, P3 arrive here

P 1 P, Py P, SRTF

11 1 1T T T 1
0 10 20 30 40 50 60 70 80 9(,) 100 110 120 130 140150

—— Time

» A Preemptive (?) scheduler

» Preempts running task if time left is more than that of new
arrival

10/16

Round Robin (RR)

P
p B 3
SJF
N AW |
N0/ 22007y 30 10 50 60
[N
! A
!/ \,\' \ ! —— Time
IR
H HHH RR (good for response time)
I
10 20 30 40 50 60

Every process is executed
for a fixed quantum of time

Slice is big enough to
reduce or pay off for the
cost of context switch

Premeptive

Good for response time and
fairness

Bad for turn around time

11/16

Round Robin (RR)....
A small fixed unit of time called a quantum (or time-slice) is
defined (10-100 millisecc.).
» Process at head of the ready queue is allocated the CPU for
one quantum.
» When the time has elapsed, the process is preempted and
added to the tail of the ready queue.

Following are good properties of RR:

» Fair: if there are n processes in the ready queue and the time
quantum is g, then each process gets 1/nth of the CPU.

» Ljve: no process waits more than (n — 1)g time units before
receiving a CPU allocation.

» Typically get higher average turnaround time than SRTF, and
better average response time.

» By trickily choosing correct size quantum (q):

» g too large = FIFO
» g too small = context switch overhead too high.

12/16

Static Priority Scheduling

P> Associates an integer with each process type, e.g.
» Priority 0: for internal processes,
» Priority 1: interactive processes,
» Priority 2: students interactive processes,
» Priority 3: batch processes

» Allocate CPU to the highest priority process (lowest integer)
» How to solve ties?

» Round robin with time-slicing
» This has Problem: Biased towards CPU intensive jobs
» The less priority processes will go starvation

13/16

Dynamic Priority Scheduling

» Use same scheduling algorithm, but allow priorities to change
over time.
» Simple aging:
> processes have a (static) base priority and a dynamic effective
priority.
P |If a process starves for k-seconds, increment effective priority.
» Once a process runs, reset the effective priority.

14/16

Schedulers in Real (actual) Systems

» Real schedulers are more complex
» For example, Linux uses a Multi-Level Feedback Queue
(MLFQ)
» Many queues, in order of priority
» Process from highest priority queue scheduled first
» Within same priority, any algorithm like RR
P Priority of process decays with its age

15/16

Process control block

OS maintains information about
every process in a data structure
called a process control block

(PCB):
» Unique process identifier

» Process state (Running,
Ready, etc.)

» CPU scheduling &
accounting information

» Program counter & CPU
registers

» Memory management
information

Process ID

Current porcess state

CPU scheduling information

Program counter (PC)

Other CPU registers

Memory management information

Other information

(e.g., list of open files, names of
executables, identity of owner, CPU
time used so far, devices owned)

-]

— Pointers to next and previous PCBs —

—>

16/16

