
Operating system concepts
Problems of Multi-threading

Slides Set #9

By Prof K R Chowdhary

JNV University

2023

1/8



Threads with shared data

Problem statement: We would like to declare a global variable “int
counter =0;” and create two threads “A” and “B”.

▶ Each thread runs in its own way (asynchronous threads) and
tries to increment the “counter”, through a loop variable i=0
to “< 100,000”.

▶ There is no limit on the value of “counter” variable.

▶ Since two counters try to increment the counter by 100,000,
the counter should become finally 200,000. But it does not!

▶ Why so?

2/8



Threads with shared data

/* thrd_sync.c */

#include <pthread.h>

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

static volatile int counter =0;

// mythread()

//add 1 to counter repeatedly, in a loop

// to add 100000 to counter, then it

shows the problem.

void *mythread(void *arg){

printf("Thread %s: begins\n", (char *)arg);

int i;

for(i=0; i< 100000; i++) counter++;

printf("Thread %s: ends\n", (char *)arg);

return NULL;

}

3/8



Threads with shared data

//Just launch two threads

int main(){

pthread_t p1, p2;

printf("main: begin (counter = %d)\n", counter);

pthread_create(&p1, NULL, mythread, "A");

pthread_create(&p2, NULL, mythread, "B");

//join waits for the threads to finish

pthread_join(p1, NULL);

pthread_join(p2, NULL);

printf("main: done with both counter = %d\n", counter);

return 0;

}

4/8



Run 1: Threads with shared data

▶ What do we expect? Two threads, each increments counter
by 100000, so 2X100000 (?)

\$ gcc -o main main.c

\$ ./main

main: begin (counter = 0)

Thread A: begins

Thread B: begins

Thread B: ends

Thread A: ends

main: done with both counter = 168137

▶ Questions:

- What are the global variables here?

- The sum of two for loops, each 1-100000, is 2,00,000. But
counter did not reach to 2,00,000 (???)

5/8



Run 2 (with same compiled file): Threads with “shared
data”

▶ What do we expect? Two threads, each increments counter
by 100000, so 2X100000 total (?)

\$ gcc -o main main.c

\$ ./main

main: begin (counter = 0)

Thread A: begins

Thread B: begins

Thread A: ends

Thread B: ends

main: done with both counter = 134004

▶ The sum of two for loops, each 1-100000, is 2,00,000. But
counter did not reach to 2,00,000 (???)

▶ It is race condition. Why this name?

6/8



Race conditions and synchronization

▶ What just happened is called a race condition

- Concurrent execution can lead to different results

▶ Critical section: portion of code that can lead to race
conditions

▶ What we need: mutual exclusion

- Only one thread should be executing critical section at any
time

▶ What we need: atomicity of the critical section

- The critical section should execute like one uninterruptible
(unbreakable) instruction

▶ That is: undivided “fetch + execute + store” is continuous
for one instruction.

▶ How is it achieved? Locks (topic of next lecture)

7/8



Race conditions and synchronization...

▶ Questions:

- Why the race condition occurs?

- How the critical section can stop race condition?

- What is mutual exclusion?

- What is atomicity of an instruction?

- Will the following assembly code provide atomicity, where
2000 is address of a global variable?

LXI H, 2000

MOV A, M

INR A

MOVE M, A

; This code is running in two threads

8/8


