Operating system concepts

Problems of Multi-threading
Slides Set #9

By Prof K R Chowdhary
JNV University

2023

1/8



Threads with shared data

Problem statement: We would like to declare a global variable “int
counter =0;" and create two threads “A” and “B".

» Each thread runs in its own way (asynchronous threads) and
tries to increment the “counter”, through a loop variable i=0
to “< 100,000".

» There is no limit on the value of “counter” variable.

» Since two counters try to increment the counter by 100,000,
the counter should become finally 200,000. But it does not!

> Why so?

2/8



Threads with shared data

/* thrd_sync.c */
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
static volatile int counter =0;
// mythread()
//add 1 to counter repeatedly, in a loop
// to add 100000 to counter, then it
shows the problem.
void *mythread(void *arg){
printf ("Thread %s: begins\n", (char *)arg);
int i;
for(i=0; i< 100000; i++) counter++;
printf ("Thread %s: ends\n", (char *)arg);
return NULL;

3/8



Threads with shared data

//Just launch two threads

int main(){
pthread_t pl, p2;
printf("main: begin (counter = %d)\n", counter);
pthread_create(&pl, NULL, mythread, "A");
pthread_create(&p2, NULL, mythread, "B");

//join waits for the threads to finish
pthread_join(pl, NULL);
pthread_join(p2, NULL);
printf("main: done with both counter = %d\n", counter);
return O;

4/8



Run 1: Threads with shared data

» What do we expect? Two threads, each increments counter
by 100000, so 2X100000 (?)

\$ gcc -o main main.c

\$ ./main

main: begin (counter = 0)

Thread A: begins

Thread B: begins

Thread B: ends

Thread A: ends

main: done with both counter = 168137

» Questions:
- What are the global variables here?

- The sum of two for loops, each 1-100000, is 2,00,000. But
counter did not reach to 2,00,000 (777?)

5/8



Run 2 (with same compiled file): Threads with “shared
data”

» What do we expect? Two threads, each increments counter
by 100000, so 2X100000 total (?)

\$ gcc -o main main.c
\$ ./main

main: begin (counter
Thread A: begins
Thread B: begins
Thread A: ends
Thread B: ends

main: done with both counter = 134004

0)

» The sum of two for loops, each 1-100000, is 2,00,000. But
counter did not reach to 2,00,000 (777?)

> |t is race condition. Why this name?

6/8



Race conditions and synchronization

> What just happened is called a race condition
- Concurrent execution can lead to different results

» Critical section: portion of code that can lead to race
conditions

> What we need: mutual exclusion

- Only one thread should be executing critical section at any
time

> What we need: atomicity of the critical section

- The critical section should execute like one uninterruptible
(unbreakable) instruction

» That is: undivided “fetch + execute + store” is continuous
for one instruction.

» How is it achieved? Locks (topic of next lecture)

7/8



Race conditions and synchronization...

>

Questions:

Why the race condition occurs?

How the critical section can stop race condition?
What is mutual exclusion?

What is atomicity of an instruction?

Will the following assembly code provide atomicity, where
2000 is address of a global variable?

LXI H, 2000

MOV A, M

INR A

MOVE M, A

; This code is running in two threads

8/8



