
Machine Learning: Basic Neural Nets to Deep
Learning

Prof K R Chowdhary

Former Professor & Head, CSE, MBMEC

July 9, 2025

Prof K R Chowdhary Machine Learning 1/ 52



Supervised Learning

Most successful kinds of machine learning algorithms are: those
that automate decision-making by generalizing from known
examples. In supervised learning, the user provides the algorithm
with pairs of: inputs and desired outputs, and the algorithm finds
a way to produce the desired output given an input.

The algorithm is able to create an output for an input it has never
seen before without any help from a human. Considering that pair
of inputs are: {(1, 2), (2, 4), (3, 9), (4, 16), ..., (10, 100)}, the
system learns that the relation is square. Now, this relation (of
square) is used to produce output for any input x , and the output
will be x2.

Prof K R Chowdhary Machine Learning 2/ 52



Supervised Learning ...

Considering the example of email classification using machine
learning, a user provides the algorithm with a large number of
emails as input, together with information about whether the email
is spam (i.e., the desired output).
Given a future new email, the algorithm will then produce a
prediction as to whether the new email is a spam (see Fig. 1).

Figure 1: Machine Learning Algorithm: (a) Training phase, (b) Testing
Phase

Prof K R Chowdhary Machine Learning 3/ 52



Supervised ML

1. Identifying zip code from
handwritten digits: Input is a
scan of the handwriting, and the
desired output is the actual
digits in the zip code.

2. Determining whether a tumor
is benign: Input is the medical
image, and the output is

whether the tumor is benign.

3. Detecting fraudulent credit
card transaction: Input is a
record of the credit card
transaction, and the output is
whether it is likely to be
fraudulent.

Prof K R Chowdhary Machine Learning 4/ 52



Mathematical definition of Supervised Learning

Example: Given an input or feature vector x, one of the main goals
of machine learning is to predict an output variable y . For
example, x could be a digitized signature and y , a binary variable
that indicates whether the signature is genuine or not.

Figure 2: Defining Machine Learning

The g comprises all the information about the relationship between
the variables x and y , excluding the random and chance cases.

Prof K R Chowdhary Machine Learning 5/ 52



Unsupervised Learning

• As an example, consider the
task of learning to detect spam
e-mail versus the task of
anomaly detection.

• For the first, we consider a
setting in which the learner
receives e-mails to be trained,
and each of it is manually
labeled as “spam” or
“not-spam”. On the basis of

such training, the learner figures
out a rule for labeling a newly
arriving e-mail messages as
spam or no-spam.

• In contrast, for the task of
anomaly detection, all that the
learner gets as training is a large
body of e-mail messages (with
no labels) and the learner’s task
is to detect “unusual” messages.

Prof K R Chowdhary Machine Learning 6/ 52



Unsupervised algorithms

• In unsupervised learning, only
the input data is known, and no
known output data or labels are
provided. Some examples are:

• Identifying topics in a set of
blog posts: If you have a large
collection of text data, you
might want to summarize it and
find prevalent themes in it.

• Segmenting customers into
groups: Given a set of customer
records, you might want to

identify which customers are
similar, and whether there are
groups of customers with similar
preferences.

• Detecting abnormal access
patterns to a website: To
identify abuse or bugs, it is
often helpful to find access
patterns that are different from
the norms.

• All these processes are
clustering algorithms.

Prof K R Chowdhary Machine Learning 7/ 52



Data for Supervised and Unsupervised Learning

• Both supervised and
unsupervised learning tasks
requires representation of input
data, in the form of a table.

• Image can be described by,
e.g., image of a tumor, by the
gray-scale values of each pixel,
or maybe by using the size,
shape, and color of the tumor.

• Each entity or row, is known
as a sample (or data point) in
machine learning, while the
columns – the properties that
describe these entities –are
called features.

• Building a good
representation of data is called
feature extraction or feature
engineering.

Prof K R Chowdhary Machine Learning 8/ 52



Learning through Neural Networks

• An average five-year-old child
can easily recognize difference
between his teacher madam’s
face and that of his mother.
But, a computer with
conventional programming,
cannot do it.

• A neural network consists of
two or more layers: an input
layer, zero or more hidden
layers, and an output layer.

• Using an iterative approach, a
neural network continuously
adjusts and makes inferences
until some stopping point is
reached.

• The Neural Networks have
applications in image
recognition, natural language
and speech processing, and
computer vision.

Prof K R Chowdhary Machine Learning 9/ 52



Neural Networks (NNs) vs. Deep Learning (DL) Networks

• DL networks are complex
NNs, with many layers, designed
to emulate human brain.
Computers using these can be
trained to deal with abstractions
and problems that are poorly
defined.

• A typical NN may consist of
thousands or even millions of
simple processing nodes that are
densely interconnected.

They are useful in learning
patterns from unstructured
data.

• DL uses hierarchical neural
networks to learn from a
combination of unsupervised
and supervised algorithms.
Typically, DL networks learns
from unlabeled and
unstructured data.

Prof K R Chowdhary Machine Learning 10/ 52



Neural Networks

• Artificial Neural Networks
(ANN) is a brain model.

• The science of machine
learning is mostly experimental
as there is a no universal
learning algorithm yet. Given a
number of tasks, none can make
a computer to learn every task
well.

• We are fairly good at general
learning abilities due to which
we are able to master number of
tasks, like playing chess and

playing cards.

• A knowledge-acquisition
algorithm is always required to
be tested on learning tasks and
data.

• There is no method to prove
that the given algorithm will be
consistently better for all the
situations.

• These arguments suggest and
might serve as inspirations for
building machines with some
form of general intelligence.

Prof K R Chowdhary Machine Learning 11/ 52



Neural Networks...

• Basic unit of brain for
performing the computation is a
cell, called neuron, each one of
them sends a signal to other
neurons through very small gaps
between the cells, called
synaptic clefts.

• The property of any neuron of
sending a signal through this
gap, and the amplitude of the
signal together, is called as
synaptic strength.

• As a neuron learns enough, its
synaptic strength increases, and
in that situation, if it is
stimulated by an electrical
impulse, there are better
chances that it would send
messages to its neighboring
neurons.

• Using iterations, a neural
network continuously adjusts
and makes inferences until some
stopping pt. reached.

Prof K R Chowdhary Machine Learning 12/ 52



Architecture of a simple NN

• Majority of these algorithms
are based on supervised learning.

• As an example, let picture of
sunrise is associated with
caption: “Sunrise”. Hence, goal
of learning algorithm is: take
the photo as an input, and

produce name of object in the
image, as output, i.e., “sunrise.”

• The process of transforming
an input to the output is math
function.

• Synaptic strength (a
numerical value) produce this
function, which is the solution
to the learning through ANN.

• In fact, when we want to
teach to the algorithm “what
the sunrise is”, then the
algorithm should recognize any
sunrise, even the one for which
we have not trained it! This is
the goal of ML.

Prof K R Chowdhary Machine Learning 13/ 52



NN: Properties

Important properties:

- Learning ability,

- Massive parallelism,

- Adaptability,

- Fault tolerance,

- Distributed representation
and computation,

- Generalization ability, and

- Low energy consumption.

Thus, ANN has many
applications. Although their
models vary, the most common
is in learning and computation,
where ANN is the basic
processing unit. Each processing
unit has following properties:

- an activity-level to
represent neuron’s
polarization state,

- an output value represents
firing rate,

- a set of input connections,

- synapses on the cell and its
dendrite,

- a bias value to represent an
internal resting level of a
neuron, and

- output connections to
represent neuron’s axonal
projections.

Prof K R Chowdhary Machine Learning 14/ 52



Basic model of an Artificial Neuron

• Each connection of a neuron
has an associated weight, called
synaptic strength or weight wi

of ith input, that influences the
effect of the incoming input on
the activity of the unit. The
weight is either +ve (excitatory)
or -ve (inhibitory).

• The basic model for artificial
neuron with binary threshold is
shown above.

• The mathematical neuron
computes the weight as the sum
of its n-input signals x1, ..., xn.
• The generated output is 1, if
the sum > threshold u, else,
output is 0. The o/p is:

y = θ
( n∑
i=1

wixi − u
)
, (1)

• The θ(.) is unit step function
at 0. Threshold u is other
weight; w0 = −u is attached to
the neuron with a constant
input x0 = 1.

Prof K R Chowdhary Machine Learning 15/ 52



An overly simplified one of true biological neuron

• A properly chosen weights
allows a synchronous
arrangement of such neurons to
perform universal computations.

• There is a crude analogy of
this neuron model to biological
neurons as follows: wires and
interconnections model the
axons and dendrites,
respectively, in the biological
neuron.

• The connection weights in
here correspond to synapses in
biological neuron, and threshold
function approximates the
activity in biological neuron.

• The ANNs can be considered
as weighted directed graphs,
where artificial neurons act as
nodes, and directed edges with
weights are connections between
neurons, and between outputs
and inputs of neuron.

• Based on the connection
pattern an ANN can be
classified as:

- Feed-forward networks: The
direct graphs have no loops.
- Recurrent feedback networks:
Have loops, due to feedback
connections.

Prof K R Chowdhary Machine Learning 16/ 52



Linear Classifiers

• Examples with n-dimensional
instance space, positive and
negative examples tend to
cluster in different regions.

• This observation motivates us
to use another approach to
classification where we identify
decision surfaces that separates
the two classes.

• A very simple approach is to
use a linear function.

• The goal of predictive
modeling is to build a model
that predicts some specified
attribute(s) value from the
values of the other attributes.

• We will elaborate on linear
classifier in general.

• We shell use a domain with
attributes as real numbers. To
use these attributes in a
algebraic function shown in
Fig. 3

Prof K R Chowdhary Machine Learning 17/ 52



Linear Classifier

Figure 3: A linear classifier in a
domain of two real valued
attributes x1, x2

• Examples are labeled as

positive (+) and negative (-),
and two classes are separated by
a linear function:

2.5− 0.8x1 − x2 = 0 (2)

• Equation (2)1, the variables x1
and x2 are real numbers.
Exercise: Given the graph in
Fig. (3), construct the eq. (2).
Hint: Extend line to -x1
direction, and the angle m in
y = max + c is − 2.5

3.125 = 0.8

1This equation is a standard line equation y = mx + c, where m is slope
and c is point where this line intersects on x axis. We have used coordinates
x1, x2, which can be extended to n coordinates x1 ... xn.

Prof K R Chowdhary Machine Learning 18/ 52



Linear Classifier...

• Table 1 shows seven examples
of attributes (x1, x2), value of
classifier “2.5− 0.8x1 − x2,” and
class of the example.

• When value of classifier is
neg , point or the coordinate is
falling above the straight line in
Fig. 3, when classifier returns
positive, the example is taken as
belonging to pos class.

• Hence, given a classifier like
this, we are able to classify any
attribute set, which is a two

dimensional vector.

Table 1: Set of attributes (x1, x2)
and their classes

x1 x2 2.5−0.8x1−x2 Class

1.0 2.3 −0.6 neg
1.6 1.8 −0.58 neg
2.1 2.7 −1.88 neg
2.4 1.4 −0.82 neg
0.8 1.1 +0.76 pos
0.8 1.8 +0.06 pos
1.4 0.8 +0.58 pos

Prof K R Chowdhary Machine Learning 19/ 52



Linear Classifier...

• Note only the linear
classifier (2) classifies examples
as pos and neg, but any
classifier, e.g., 1.5 + 2.1x1−
1.1x2, will classify infinitely
large number of examples as
pos/neg. Generic form is:

w0 + w1x1 + w2x2 = 0. (3)

And, for a domains with n
attributes is:

w0+w1x1+ ...+wnxn = 0. (4)

In eq. (4), if n = 2, it a line, if
n = 3, it is a plane, for n > 3, it

is a hyperplane. If 0th attribute
x0 = 1, eq. (4) becomes:

n∑
i=0

wixi = 0. (5)

Classifier’s behavior is decided
by coefficients wi (weights).
Task of ML is: find out wi ’s
values. In equ. y = mx + c , the
m is angle w.r.t. x axis, and in
(4), coefficients w1, ...,wn define
angle of hyperplane, w.r.t.
system of coordinates, w0 is bias
or offset – the hyperplane has
distance from the system
coordinates.

Prof K R Chowdhary Machine Learning 20/ 52



Linear Classifier...

• Bias versus Threshold: Bias is
amount of error introduced by
approximating real-world
phenomena with a simplified
model.

• Bias in Fig. 3 is w0 = 2.5,
lower the bias, classifier shifts
closer to origin [0, 0], higher
value shifts it away from origin.
At, w0 = 0, the classifier
intersects the origin of the
coordinate system. Equation (4)
can also be written as:

w1x1 + w2x2 + ...+ wnxn = θ,
(6)

here, θ = −w0. This θ is called
threshold that weighted sum
has to exceed it, if the example
is to be positive.

Table 2: Attributes (x1, x2), their
weighted sum and threshold

x1 x2 (−0.8x1−x2) θ

1.0 2.3 −3.3 −2.5
1.6 1.8 −3.8 −2.5
2.1 2.7 −4.26 −2.5
2.4 1.4 −3.52 −2.5
0.8 1.1 −1.74 −2.5
0.8 1.8 −2.24 −2.5
1.4 0.8 −1.92 −2.5

Prof K R Chowdhary Machine Learning 21/ 52



Perceptron Learning

• Last 3 examples (table 2):
weighted sum in third column
exceeds θ, so they have pos
labels. First 4 examples:
weighted sum < θ, so
label=neg.

• Perceptron Learning: To
simplify linear classifier, we
assume that training example x
is described by n binary
attributes for n dimensions,
xi ∈ x is binary, i.e., 0 or 1.

• For c(x) = 1, class=pos, for
c(x) = 0, it is neg . Real class is
c , and hypothesized class is

h(x), (h = hypothesis). If,∑n
i=0 wixi > 0, classifier

hypothesizes x as pos, so
h(x) = 1.

• When,
∑n

i=0 wixi ≤ 0, label is
neg and h(x) = 0.

• Examples with c(x) = 1 are
linearly separable from those
with c(x) = 0. So, there exists
a linear classifier that can label
correctly all the training
examples x, and for each
h(x) = c(x). Task of ML: find
weights wi that correctly
classifies all x.

Prof K R Chowdhary Machine Learning 22/ 52



Inducing the Linear Classifier

• Objective: for any attribute
example x with real class
c(x) = 1, the classifier must
hypothesize the example as
positive, i.e. h(x) = 1, and
when c(x) = 0, it must
hypothesize x as negative, i.e.
h(x) = 0. We can do this by
adjusting the weight wi .

• When classifier is presented
with training example x, it must
return its label as h(x). If
c(x) ̸= h(x), weights wi are not
perfect, so they must be
modified so that c(x) = h(x).

• Assume that c(x) = 1 and

h(x) = 0. This happens only if∑n
i=0 wixi < 0: an indication

that the weights are too small.
So, weights must be increased
so that

∑n
i=0 wixi > 0, (So,

h(x) = 1.

• It is simple to understand that
only the weight of wi be
increased for which xi = 1,
(when xi = 0, wi .xi =
wi .0 = 0). (This is the reason
we chose binary attributes!!).

• Similarly, when c(x) = 0 and
h(x) = 1, we decrease the
weights wi for which xi are 1, so
that

∑n
i=0 wixi < 0.

Prof K R Chowdhary Machine Learning 23/ 52



Weight adjustment in Perceptron

Weight adjustment Summary:

• Hypothesized label, h(x) = 1
when real class label c(x) = 0:
decrease wi for attribute xi = 1,

• Hypothesized label, h(x) = 0
when real class label c(x) = 1:
increase wi for attribute xi = 1,

• Both labels same, c(x) =
h(x): no wt. adjustment reqd.

Regulate the weights by:

wi = wi+η.[c(x)−h(x)].xi (7)

η ∈ (0, 1], called learning rate.

• Checking validity of equation
(7): (i) When c(x) = h(x): wi

remains unchanged.

(ii) When c(x) = 1 and
h(x) = 0: RHS of equ. (7) is:
wi + η.1.xi = wi + η, as xi = 1.
This increases wi , so it is ≥ 1,
hence perceptron fires, and
makes h(x) = 1.

(iii) When c(x) = 0 but
h(x) = 1: RHS of equ. (7) is:
wi + η.[−1].1 = wi − η, as
xi = 1. This decreases wi to
≤ 0, it stops the perceptron
from firing, and makes h(x) = 0.

This concludes how perceptron
hypothesizes the same label as
the label of c(x).

Prof K R Chowdhary Machine Learning 24/ 52



Perceptron Learning Algorithm

• To start with, weights wi of
perceptron are initialized to
some random values. Next,
each training example x with
attributes x1, ..., xi , ..., xn, is
presented to the classifier, one
at a time. Each time, every
weight of the classifier is
subjected to equation (7).

• The training for last example
x shows that one epoch (round)

of training is complete. If all the
labels are correctly
hypothesized, indicated by
h(x) = c(x), the training
process is terminated, else it
repeats from first example
again. Usually, many such
rounds are needed to train the
perceptron. The corresponding
algorithm is shown as
algorithm 1.

Prof K R Chowdhary Machine Learning 25/ 52



Perceptron Learning Algorithm...

Algorithm 1 Perceptron learning Algorithm

1: % Let two classes be c(x) = 1 and c(x) = 0, and they are
linearly separable.

2: Initialize weights wi to some small random numbers.
3: Choose some suitable learning rate η ∈ (0, 1].
4: while c(x) ̸= h(x) for all training examples do
5: for each training example x = (x1, ..., xn), having class c(x)

do
6: h(x) = 1 if

∑n
i=0 wixi > 0, otherwise h(x) = 0.

7: Update each weight using the formula, (7)
8: end for
9: end while

Prof K R Chowdhary Machine Learning 26/ 52



Example on Perceptron Learning Algorithm

We are given a table of
examples as 3, with three
examples Ex1 to Ex3, each
having three binary attributes.

Table 3: Examples for perceptron
learning

Example x1 x2 x3 c(x)
Ex1 1 1 0 1
Ex2 0 0 1 0
Ex3 1 0 1 0

We consider that learning rate
η = 0.6, and randomly

generated initial weights
w0,w1,w2,w3 are
[0.15, 0.2, 0.1, 0.25] and x0 = 1.
Given these, our objective is to
separate the “+” examples
(Ex1) from “-” examples (Ex2,
Ex3).
The classifier’s hypothesis about
class x: h(x) = 1 if∑n

i=0 wixi > 0, and h(x) = 0,
otherwise. After each example
is presented to the classifier, all
the weights are adjusted through
formula (7), as table 5 shows.

Prof K R Chowdhary Machine Learning 27/ 52



Example on Perceptron Learning Algorithm...

Table 4: Weight adjustments for perceptron learning

Var.→
Examples ↓

x1 x2 x3 w0 w1 w2 w3 c(x) h(x) c(x)-h(x)

Random clas-
sifier

0.15 0.2 0.1 0.25

Ex1→ 1 1 0 1 1 0
New Classi-
fier:

0.15 0.2 0.1 0.25

Ex2→ 0 0 1 0 1 −1
New Classi-
fier:

−0.45 0.8 0.7 −0.35

Ex3→ 1 0 1 0 0 0
New Classi-
fier:

−0.45 0.8 0.7 −0.35

Prof K R Chowdhary Machine Learning 28/ 52



Example on Perceptron Learning Algorithm...

• Let us see how the computation in table 5 are computed: First,
we find out hypothesized class h(x) in Ex1:

n∑
i=0

wixi

=w0x0 + w1x1 + w2x2 + w3x3

=0.15× 1 + 0.2× 1 + 0.1× 1 + 0.25× 0

=0.45

Hence, h(x) = 1. Since, c(x) = 1 and h(x) = 1, their difference is
zero. So, no weight will change, and the final weights remains the
same as it is for Ex2.

• Since c(x)− h(x) ̸= 0 in Ex1 to Ex3, we make 2nd round, where
weights of Ex3 are used in place of Random classifier at top of the
table, and calculate the table again.

• This also does not make c(x) = h(x), we make one more round,
resulting table is given in next slide.

Prof K R Chowdhary Machine Learning 29/ 52



Example on Perceptron Learning Algorithm...

Table 5: Weight adjustments for perceptron learning

Var.→
Examples ↓

x1 x2 x3 w0 w1 w2 w3 c(x) h(x) c(x)-h(x)

Random clas-
sifier

−0.45 0.2 0.7 −0.95

Ex1→ 1 1 0 1 1 0
New Classi-
fier:

−0.45 0.2 0.7 −0.95

Ex2→ 0 0 1 0 0 0
New Classi-
fier:

−0.45 0.2 0.7 −0.95

Ex3→ 1 0 1 0 0 0
New Classi-
fier:

−0.45 0.2 0.7 −0.95

Prof K R Chowdhary Machine Learning 30/ 52



Conclusion: Perceptron
Learning Algorithm • So, the
classifier is trained in three
steps. It classifies Ex1 in one
class (+) and Ex2, Ex3 in “−”
class, as seen in the column
c(x)− h(x of the table. Final
version of classifier:
−0.45+0.2x1+0.7x2−0.95x3 =
0, no longer classifies wrongly.
The training has thus been
completed in three epochs
(rounds).

• Note: Learning has taken
place using perceptron, and
have obtained a linear classifier:

−0.45+0.2x1+0.7x2−0.95x3 = 0,
(8)

Now, it classify any amount of
data as either “+” or “-”, in
single step. So, classifier has
been induced.

• Important: Irrespective of he
initial weights (w0..wn), size n
of attribute vector, and learning
rate η, if the “+” and “-”
classes are linearly separable,
this algorithm is guaranteed to
find a version of hyperplane in
finite number of steps, that
separates the classes.

Prof K R Chowdhary Machine Learning 31/ 52



Perceptron learning Program

import numpy as np

# Input data: 3 examples with 4 features (x0 to x3)

X = np.array([

[1, 1, 1, 0],

[1, 0, 0, 1],

[1, 1, 0, 1]

])

# Real class labels

c = np.array([1, 0, 0])

# Initial weights

weights = np.array([0.15, 0.2, 0.1, 0.25])

# Parameters

learning_rate = 0.6

epochs = 3

Prof K R Chowdhary Machine Learning 32/ 52



Perceptron...

# Perceptron Learning

for epoch in range(epochs):

print(f"\nEpoch {epoch + 1}")

for i in range(len(X)):

x_i = X[i]

target = c[i]

activation = np.dot(weights, x_i)

h_x = 1 if activation > 0 else 0 # Binary threshold at 0

error = target - h_x

print(f" Input: {x_i}, Target: {target}, h(x): {h_x},

Error: {error}")

# Weight update rule

weights = weights + learning_rate * error * x_i

print(" Updated Weights:", weights)

Prof K R Chowdhary Machine Learning 33/ 52



Perceptron...

# Final model output

print("\nFinal Weights after Training:", weights)

# Prediction function

def predict(x):

return 1 if np.dot(weights, x) > 0 else 0

# Test all inputs

print("\nPredictions:")

for x in X:

print(f" Input: {x}, Predicted Class: {predict(x)}")

Prof K R Chowdhary Machine Learning 34/ 52



Perceptron...Results

The results on running this program are shown below:

Epoch 1

Input: [1 1 1 0], Target: 1, h(x): 1, Error: 0

Input: [1 0 0 1], Target: 0, h(x): 1, Error: -1

Input: [1 1 0 1], Target: 0, h(x): 0, Error: 0

Updated Weights: [-0.45 0.2 0.1 -0.35]

Epoch 2

Input: [1 1 1 0], Target: 1, h(x): 0, Error: 1

Input: [1 0 0 1], Target: 0, h(x): 0, Error: 0

Input: [1 1 0 1], Target: 0, h(x): 1, Error: -1

Updated Weights: [-0.45 0.2 0.7 -0.95]

Epoch 3

Input: [1 1 1 0], Target: 1, h(x): 1, Error: 0

Input: [1 0 0 1], Target: 0, h(x): 0, Error: 0

Input: [1 1 0 1], Target: 0, h(x): 0, Error: 0

Updated Weights: [-0.45 0.2 0.7 -0.95]

Prof K R Chowdhary Machine Learning 35/ 52



perceptron learning .. results

The results on running this program are shown below:

Final Weights after Training: [-0.45 0.2 0.7 -0.95]

Predictions:

Input: [1 1 1 0], Predicted Class: 1

Input: [1 0 0 1], Predicted Class: 0

Input: [1 1 0 1], Predicted Class: 0

Prof K R Chowdhary Machine Learning 36/ 52



Support Vector Machine (SVM)

The support vector machine (SVM) is a parametric model, which
typically solves the same problem of classification with two classes
– and yields the similar performance.

Figure 4: Classification using SVM

Prof K R Chowdhary Machine Learning 37/ 52



SVMs ...

import numpy as np

import matplotlib.pyplot as plt

from sklearn.svm import SVC

from sklearn.preprocessing import LabelEncoder

# Input data

weight = [45, 50, 60, 60, 70, 70, 50, 60, 60, 70, 80, 80]

height = [1.5, 1.7, 1.8, 2.0, 1.9, 2.0, 1.4, 1.5, 1.55, 1.6,

1.6, 1.7]

labels = [’No’,’No’,’No’,’No’,’No’,’No’,’Yes’,’Yes’,’Yes’,

’Yes’,’Yes’,’Yes’]

# Combine features into a 2D array

X = np.column_stack((weight, height))

# Encode labels to 0 and 1

encoder = LabelEncoder()

y = encoder.fit_transform(labels) # No -> 0, Yes -> 1

Prof K R Chowdhary Machine Learning 38/ 52



SVM ...

# Train hard-margin SVM by setting C to a large value

model = SVC(kernel=’linear’, C=1e6)

model.fit(X, y)

# Print model parameters

print("Support Vectors:\n", model.support_vectors_)

print("Coefficients (w):", model.coef_)

print("Intercept (b):", model.intercept_)

# Visualize the decision boundary

def plot_svm(model, X, y):

plt.figure(figsize=(8, 6)) # in Inches

# Plot data points

for label, marker, color in zip([0, 1], [’o’, ’s’],

[’blue’, ’red’]): plt.scatter(X[y == label, 0],

X[y == label, 1], marker=marker, color=color,

label=f"{encoder.inverse_transform([label])[0]}")

Prof K R Chowdhary Machine Learning 39/ 52



SVM ...

# Plot decision boundary and margins

ax = plt.gca()

xlim = ax.get_xlim()

ylim = ax.get_ylim()

xx = np.linspace(xlim[0], xlim[1], 100)

yy = np.linspace(ylim[0], ylim[1], 100)

YY, XX = np.meshgrid(yy, xx)

xy = np.vstack([XX.ravel(), YY.ravel()]).T

Z = model.decision_function(xy).reshape(XX.shape)

plt.contour(XX, YY, Z, levels=[0], linewidths=2,

colors=’black’)

plt.contour(XX, YY, Z, levels=[-1, 1], linestyles=

[’--’, ’--’], colors=’gray’)

Prof K R Chowdhary Machine Learning 40/ 52



SVM ...

plt.xlabel(’Weight (kg)’)

plt.ylabel(’Height (m)’)

plt.title(’Hard-Margin SVM Classification’)

plt.legend()

plt.grid(True)

plt.show()

# Call the plot function

plot_svm(model, X, y)

Support vectors: [[45.0 1.5][70.0 1.9][50.0 1.4]],
The coefficients: (w): [[0.17905957 − 11.15761197]],
Intercept (b): [7.67388049].
Coefficients represents the linear decision boundary line in 2D:

f (x) = w1.x1 + w2.x2 + b, (9)

where x1 is weight, x2 is height, and b is intercept.

Prof K R Chowdhary Machine Learning 41/ 52



SVM ...

SVM decides class of (x1, x2):
• if f (x) > 0: Class = 1 =Yes
• if f (x) < 0: Class =0=No
• f (x) = 0 Point lies on

decision boundary.
Hence, the decision boundary
equation is: 0.179 weight −
11.1576 height + 7.6739 = 0.

Figure 5: SVM to classify individual as over-weight or not, based on
weight vs. height data

Prof K R Chowdhary Machine Learning 42/ 52



Deep Learning (DL): Intro

• The ML (particularly, the DL)
has become popular in research,
and it is being used in large
number of applications,
including multimedia concept
retrieval, image classification,
video recommendation systems,
social network analysis, natural
language processing,

• The DL networks are complex

neural networks, that are often
used in image recognition,
natural language speech
processing, computer vision, and
many well-known applications.

• DL is a machine learning
technique that uses hierarchical
neural networks to learn from a
combination of unsupervised
and supervised algorithms.

Prof K R Chowdhary Machine Learning 43/ 52



Deep Learning (DL): Basic Principles

• The basic technique of DL
relies on ANNs, they are based
on general principles of
mathematics that allow them to
learn from examples, to
recognize people or objects in a
picture, and translate the
spoken language from one
language to another.

• To be successful in
generalizing, having observed

number of examples, the deep
learning network needs more
than just the examples, but
depends on hypotheses about
the data and assumptions about
what can be a possible solution
of a given problem.

• It is essentially useful when we
are trying to learn patterns from
unstructured data.

Prof K R Chowdhary Machine Learning 44/ 52



Deep Learning Architecture

Figure 6: Deep Learning example

Prof K R Chowdhary Machine Learning 45/ 52



Deep Learning (DL): Learning Process

• Mathematically, using DL, we
learn a function to map input X
to output Y , with minimal loss
on the test data.

Y = f (X ) + ε. (10)

• The real world is messy, hence
the f may be complicated. In
natural language problems, large
vocabulary sizes mean lots of
features. Vision problems
involves lots of visual
information in the form of
pixels, and, ...

• The DL function f is good
when data is complex.

• The neural networks are
known as universal function
approximators because they are
able to learn any function, no
matter how complex it is, with a
single hidden layer.

• In fact, the equation 10 is a
giant mathematical equation
with millions of terms and
equally large parameters.

Prof K R Chowdhary Machine Learning 46/ 52



Deep Learning: Feed foreward and Recurrent Networks

Figure 7: Single layer feed-forward and Recurrent feedback networks

Prof K R Chowdhary Machine Learning 47/ 52



Deep Learning (DL): 1. Convolutional neural network

• CNN: The deep neural
network that consists of
hypotheses about images.
These networks have many
layers, organized in such a way
that the output is less sensitive
to the deviation from the
original object, due to changes
in input image.

• In a typical CNN, there are
several convolution layers, each
followed by a pooling
(subsampling) layer, and in the
final stage a fully connected
layer, identical to multilayer

perceptron are common.

• The layers in the CNN have
inputs x arranged in three
dimensions, m ×m × r

• An activation function f or a
nonlineariy, applied to the
output of the convolution layers
(k) is:

hk = f (W k ∗ x+ bk). (11)

where, W k is weights, and bk

are biases.

Prof K R Chowdhary Machine Learning 48/ 52



Deep Learning: 2. Recurrent Neural Networks

• These are widely used
algorithms in deep learning,
specially in NLP and speech
processing. Unlike the
traditional neural networks,
RNN utilize the sequential
information in the network.

• This property is essential in
many applications where
embedded structure in the data
sequence convey useful
knowledge.

• For example, to understand a
word in a sentence, it is
necessary to know its context,
therefore, RNN can be seen as a
short-term memory unit that
include the input layer x , hidden
layer h and output layer y .

• In a RNN, three deep RNN
approaches include
“Input-to-Hidden,”
“Hidden-to-Output,” and
“Hidden-to-Hidden”
connections.

Prof K R Chowdhary Machine Learning 49/ 52



Deep Learning (DL): NN Learning

• All the three paradigms of
learning exists in the neural
networks, i.e, supervised
learning, unsupervised learning,
and hybrid learning.

• The unsupervised learning
based neural networks explores
the underlying structure in the
data, or correlations between
patterns in the data, and
organizes patterns into
categories based on the
correlations.

The learning rules in the neural
networks are of four basic types.

• Error-Correction Rules:
During the training, the input
x1, ..., xn is applied to the
network, and the flows through
the network generates a set of
values in the units of output y .
Next step: actual output y is
compared with the desired
target d .

• Boltzmann learning algorithm:
adjusts the connection weights
in such a way that the desired
probability distribution is
satisfied by the states of the
visible units.

Prof K R Chowdhary Machine Learning 50/ 52



Deep Learning (DL): NN Learning ...

• Hebbian Learning Rule:
Specifies the magnitude of the
weight by which the connection
between two units be increased/
decreased in proportion to the
product of their activation.

wij(t+1) = wij(t)+ ηyj(t).xi (t)
(12)

• Competitive Learning Rules:

The competitive-learning units
compete among themselves for
activation, which is in contrast
to the Hebbian learning, where
multiple output units can be
fired together.

• Hence, only one output unit is
active at any given time. The
biological neurons follow this
type of learning.

Prof K R Chowdhary Machine Learning 51/ 52



Deep Learning Applicationsg

• Natural Language Processing :
Sentimental analysis, Machine
Translation, Machine
Translation, Summarization,
Question Answering.

• Visual Data Processing :
Image Classification, Object
Detection and Semantic
Segmentation, Video
Processing, Visual Datasets.

• Speech and Audio Processing :
Speech Emotion Recognition,
Speech Enhancement.

• Other Applications:
Information Retrieval,
Transportation Prediction,
Autonomous Driving,
Biomedicine, Disaster
Management Systems.

Prof K R Chowdhary Machine Learning 52/ 52


