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6.1 Introduction

The Chomsky hierarchy, as originally defined by Noam Chomsky, comprises four types of
languages and their associated grammars and machines. Table 6.1 shows the Chomsky
hierarchy of grammars. These languages form a strict hierarchy, that is,

Regular languages ⊂ Context-free languages

⊂ Context-sensitive languages

⊂ Recursively enumerable languages.

Learning Outcomes of this Chapter:

1. Determine a language’s place in the Chomsky hierarchy (regular, context-free, recur-
sively enumerable). [Assessment]

2. Usage

3. Familiarity

6.2 Context Sensitive Grammars and Languages

We have discussed other types of languages besides those in the “classical” Chomsky hi-
erarchy. For example, we noted that deterministic pushdown automata were less powerful
than Nondeterministic Pushdown Automata (NPDA). Table 6.2 shows some of the language
classes that fit readily into this hierarchy.

Not all language classes fit neatly into a hierarchy. For example, the linear languages, which
(like deterministic context-free languages) fit neatly between the regular languages and the
context-free languages. However, there are languages that are linear but not deterministic
context-free, and there are languages that are deterministic context-free but not linear.

In fact, mathematicians have defined dozens, maybe hundreds, of different classes of lan-
guages, and how these relate to one another. We should know at least the four “classic”
categories that are taught in almost every textbook on the subject.
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Table 6.1: Chomsky Hierarchy

.

S.
No.

Language Grammar Machine Language
Example

1. Regular language Regular grammar
:

Deterministic or a∗

(type-3 language) Right-linear
grammar/

nondeterministic

Left-linear gram-
mar

finite-state
acceptor

2. Context-free lan-
guage

Context-free
grammar

Nondeterministic anbn

(type-2 language) pushdown
automata

3. Context-sensitive Context-sensitive Linear-bounded anbncn

language (type-1 grammar automata
language)

4. Recursively enu-
merable

Unrestricted
grammar

Turing machine Any com-
putable

language (type-0 function
language)

Table 6.2: Extended Chomsky Hierarchy

S.No. Language Machine

1. Regular language Deterministic or nondetermin-
istic finite state acceptor

2. Deterministic context-free
language

Deterministic pushdown au-
tomaton

3. Context-free language Nondeterministic pushdown
automaton

4. Context-sensitive language Linear-bounded automaton
5. Recursive language Turing machine that halts
6. Recursively enumerable lan-

guage
Turing machine
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A family of grammars G = (, V, S, P ) is defined by restrictions placed on the form of produc-
tion rules. We have studied that a regular grammar is defined as consisting only productions
of,

A → aA | a | ε

where A ∈ V , B ∈ V , and a ∈ Σ. A CFG is defined as,

A → α

where A ∈ V , and α ∈ (V ∪ Σ)∗.

Definition 6.1 Unrestricted Grammar. An unrestricted grammar G = (Σ, V, S, P ) has
productions of the form u → v, where, u ∈ (V ∪ Σ)∗ and v ∈ (V ∪ Σ)∗, with at least one
variable symbol in u.

Example 6.2 The language {anbncn | n ≥ 0}, which we know that it cannot be derived
using context-free grammar, can be generated by following context-sensitive grammar.

V = {S,A,C}

Σ = {a, b, c}

S → aAbc | ε

A → aAbC | ε

Cb → bC

Cc → cc.

Applying the above rules, we get,

S ⇒ aAbc

⇒ aaAbCbc ; using A → aAbC

⇒ aabCbc ; using A → ε

⇒ aabbCc ; using Cb → bC

⇒ aabbcc. using Cc → cc

Definition 6.3 Context-sensitive grammar. A context-sensitive (CS) grammar G =
(Σ, V, S, P ) has productions of the form u → v, where u, v ∈ (V ∪ Σ)∗ and |u| ≤ |v|, and u

has got at least one variable symbol in it.

Theorem 6.4 Every context-free language is context-sensitive.

Proof: The productions of a context-free grammar have the format A → v, where v ∈
(Σ ∪ V )∗. The productions of a context-sensitive grammar have the form xAy → xvy.
Thus, in A → v, with x, y as ε, it is context-sensitive.
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Theorem 6.5 There exists a context-sensitive language that is not context-free.

Proof: The language {anbncn | n ≥ 0} is not context-free (we used a pumping lemma to
show this). We can show that it is context-sensitive by providing an appropriate context-
sensitive grammar. Following are the productions for one such grammar. Note that it is
different set than in example 6.2, as ε-production has been removed here.

S → aXBC | aBC

X → aXBC | aBC

CB → BC, aB → ab

bB → bb, bC → bc, cC → cc

Using these rules we can generate the string aabbcc.

S ⇒ aXBC ;using S → aXBC

⇒ aaBCBC ;using X → aBC

⇒ aabCBC ;using aB → ab

⇒ aabBCC ;using CB → BC

⇒ aabbCC ;using bB → bb

⇒ aabbcC ;using bC → bc

⇒ aabbcc ;using cC → cc

Are there different grammars for the same language anbncn, as demonstrated in example 6.2,
and theorem 6.5? Truly not. In such situations, where the language is same, a grammar
can be transformed into another grammar, or both can be transformed into some standard
format such that they are identical.

Theorem 6.6 Every context-sensitive language is recursive.

Proof: A context-sensitive grammar is noncontracting; moreover, for any integer n there
are only a finite number of sentential forms of length n. Therefore, for any string w we can
set a bound on the number of derivation steps required to generate w, hence a bound on the
number of possible derivations. The string w is in the language if and only if one of these
derivations produces w.

Theorem 6.7 There exists a recursive language that is not context-sensitive.

Proof: The proof is left as an exercise.

6.3 Linear bounded Automata

These were originally developed as models for actual computers rather than models for the
computational process. They have become important in the theory of computation even
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though they have not emerged in applications to the extent which pushdown automata
enjoy.

In 1960, Myhill introduced an automation model today known as deterministic linear bounded
automaton. Shortly thereafter, Landweber proved that the languages accepted by a deter-
ministic LBA are always context-sensitive. In 1964, Kuroda introduced the more general
model of (nondeterministic) linear bounded automata, and showed that the languages ac-
cepted by them are precisely the context-sensitive languages.

A linear bounded automaton (LBA) is a multi-track Turing machine which has only one
tape, and this tape is exactly the same length as the input. That seems quite reasonable.
We allow the computing device to use just the storage it was given at the beginning of its
computation1. As a safety feature, we shall employ end-markers (< on the left and > on the
right) on our LBA tapes and never allow the machine to go past them. This will ensure that
the storage bounds are maintained and help keep our machines from leaving their tapes.

Definition 6.8 Linear bounded Automata. A Turing machine that uses only the tape
space occupied by the input is called a linear-bounded automaton (LBA).

At this point, the question of accepting sets arises. Let’s have linear bounded automata
accept just like Turing machines. Thus for LBA halting means accepting.

For these new machines computation is restricted to an area bounded by a constant (the
number of tracks) times the length of the input. This is very much like a programming
environment where the sizes of values for variables is bounded.

A linear bounded automaton (LBA) is a nondeterministic Turing machine M = (Q,Σ,Γ,
δ, s,H) (see Fig. 6.1) such that:

< >X1 X2 ... Xn

Input String

Left-end
Marker

Right-end

marker

Working space
in tape

s

t
r

Read-write
Head Head movement

directions

Figure 6.1: Physical model of Linear bounded Automata.

� There are two special tape symbols ‘<’and ‘>’(the left end marker and, right end
marker).

� Σ is input alphabet, Γ is tape alphabet, Γ = Σ ∪ {<,>}.

1For example, space consumed by a C program is equal to size of program code in machine language,

plus the sum of size of all the variables defined, provided that program does not create dynamic storage.



6-6 Lecture 6: Mar. 06, 2021

� The TM begins in the configuration (s,< x >, 0), where s is start state, the R/W
head points to 1st symbol of input x, and there is 0 or B after > end marker symbol.

� The TM cannot replace ‘<’or ‘>’with anything else, nor move the tape head left of
‘<’or right of ‘>’.

� H = {t, r} is set of halting states, t is accept, and r is reject state.

� δ : (Q− {t, r})× Γ → Q× Γ× {L,R}.

When expressed as production, it is : α → β, with |α| ≤ |β|. And, the LBA is non-
deterministic LBA.

Theorem 6.9 A set of strings accepted by a linear-bounded automaton is a context-sensitive
language.

Proof: A linear-bounded automaton, as defined by Myhill (1960) and, following him, by
Landweber, is a deterministic automaton specified by a tuple (Q,Σ,Γq0, δ,H), where the
set Q of states, tape symbols Γ, and input alphabet Σ are finite sets, the initial state q0 is an
element of Q, the set H of final states is a subset of Q and, finally, the behavior function δ

is a function from (Q−H)×Γ → Q×Γ×{L, S,R} where Γ = Σ∪{B,<,>}, satisfying the
condition: if δ(<, s) = (<, s′, k). Here ‘<’is is a symbol outside Γ and called the boundary
symbol2. Similar is the case with right boundary symbol ‘>’.

The automaton functions as follows. It is given, as input, a tape blocked into squares
containing a string < x >, where x is a string in Σ and ‘<’, ‘>’are the boundary symbols.
Before operating on the input it is set in the initial state q0. At the initial stage, then, it
reads the left boundary in the state q0. In general, if it is reading a symbol a in a state q,
and if δ(a, q) = (a′, q′, k), it prints a′ in the scanned square, and moves k squares to the
right (i.e., one square to the right, one square to the left, or no move at all, according as
k = 1,−1, or 0, respectively) and enters in the state q′. Continuing the calculation in this
way, if it runs off the right end of the given tape and at this time it finds itself in one of the
final states of H , then by definition the string x is accepted, or otherwise, rejected, by the
automaton. The set of all strings accepted is the language accepted by the automaton.

Now, if we allow the behavior function to be multivalued, we have a nondeterministic au-
tomaton. We understand, henceforth, by linear-bounded automaton a possibly nondeter-
ministic automaton thus obtained. Only when there is possibility of confusion, we use the
phrase “nondeterministic linear-bounded automaton” as a synonym of “linear-bounded au-
tomaton” . A linear-bounded automaton in Myhill’s sense is referred to as a deterministic
linear-bounded automaton . We then mean by a string accepted by a nondeterministic au-
tomaton M , a string for which there is a computation of M which, given the string as input,
ends up off the right end of the tape in a final state. On the other hand, a string is said
to be rejected by M if there is a computation of M which, given the string as input, never
ends, or ends up off the left end of the tape, or, finally, ends up off the right end of the tape
in a non-final state. Because of the nondeterminacy of M , a string can in general be both
accepted and rejected by M . The set of all strings accepted by M is called the languages
accepted by M . The set of all strings rejected by M is called the language rejected by M .

2This condition means that the symbol ’<’ is not effected during the computation
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6.4 Space bounds of LBA

The length restriction in CSGs has some intuition. What is the motivation for the restriction
|α| ≤ |β| in context-sensitive rules? The Idea is that, in a context-sensitive derivation
S ⇒ ... ⇒ ... ⇒ w, all the sentential forms are of length at most |w|. This means that if L
is context-sensitive, and we are trying to decide whether w ∈ L, we only need to consider
possible sentential forms of length ≤ |w|. So intuitively, we have the problem under control,
at least in principle. Note that, in the sentential form,

S = αa ⇒ α2 ⇒ ... ⇒ αi... ⇒ αn = w,

there can be at the most only (|Γ|+ |V |)|w| number of derivations, which is a finite number.

By contrast, without the length restriction, there is no upper limit on the length of interme-
diate forms that might appear in a derivation of w. So if we are searching for a derivation
for w, how do we know when to stop looking? Intuitively, the problem here is wild and out
of control. We will see this intuition made more precise as we proceed.

The machine therefore has just a finite amount of memory, determined by the length of the
input string. We call this a linear bounded automaton. An equivalent definition of an LBA
is that it uses only k times the amount of space occupied by the input string, where k is a
constant fixed for the particular machine. However, it is possible to simulate k tape cells
with a single tape cell, by increasing the size of the tape alphabet.

At the bottom level of the Chomsky hierarchy, it makes no difference: every NFA can be
simulated by a DFA. At the top level, the same happens. We have defined a “deterministic”
version of Turing machines – but any “nondeterministic Turing machine” can be simulated
by a deterministic one.

At the context-free level, there is a difference – we need NPDA to account for all context-free
languages. For example, Σ∗ − {ww | w ∈ Σ∗} is a context-free language whose complement
is not context-free. However, if L is accepted by a DPDA then so is its complement – can
just swap accepting and non-accepting states.

What about the context-sensitive level? Are NLBAs (nondeterministic LBAs) strictly more
powerful than DLBAs? This is still an open problem! (Cannot use the same argument
because it turns out that CSLs are closed under complementation – it was only shown in
1988.)

Example 6.10 Maximum number of configurations of an LBA.

Let an LBA M has Q number of states, m number of symbols in the tape alphabets, and
input of length n. Then, this M can have at most α(n) configurations, expressed by,

α(n) = mn ∗ n ∗Q, (6.1)

where mn possible number of tape contents, n is possible number of head positions for given
input of length n, and Q is number of states. �
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6.5 Detecting non-acceptance in LBA

Suppose T is an LBA. How might we detect that w is not in L(T )? Clearly, if there is
an accepting computation for w, there is one that does not pass through exactly the same
machine configuration twice, if it did, we could shorten it.

Since the tape is finite, the total number of machine configurations is finite (though large).
So in theory, if T runs for long enough without reaching the final state, it will enter the
same configuration twice, and we may as well abort.

Note that on this view, repeated configurations would be spotted “not by T itself”, but by
“us watching”, or perhaps by some super-machine spying on T .

For Turing machines with unlimited tape space, this reasoning does not work. Is there some
general way of spotting that a computation is not going to terminate?

Wider significance of Turing machines Turing machines is important because (it is
generally believed that) anything that can be done by any mechanical procedure or algorithm
can in principle be done by a Turing machine (Church-Turing thesis). For example,

� Any language L ⊆ Σ∗ that can be “recognized” by some mechanical procedure can be
recognized by a TM.

� Any mathematical function f : N → N that can be computed by a mechanical pro-
cedure can be computed by a TM (for example, representing integers in binary, and
requiring the TM to write the result onto the tape.)

6.6 Language acceptability by LBA

In the followings, we prove some important proofs about LBA. Because of finite number of
restricted length of the tape, the total configurations under which a LBA can go are finite,
hence the languages accepted by LBA (Context sensitive languages) are decidable. On the
same grounds it can be concluded that for LBA, the halting problem is decidable. The LBA
also, every LBA accepts context sensitive language (CSL), and for every CSL there exists
an LBA which accepts it, i.e., a language is accepted by LBA if and only if it is CSL.

Theorem 6.11 A language is accepted by an LBA iff it is context sensitive.

Proof: Part 1. If L is a CSL, then L is accepted by some LBA.

1. Let G = (V,Σ, S, P ) be the given grammar such that L(G) = L, which is CSL, and
we need to show that there is an LBA which recognizes L.

2. Construct LBA M with tape alphabet Σ× {V ∪ Σ} (2- track machine).

3. First track holds input string w, and second track holds a sentential form α of G, with
initial value as S.



Lecture 6: Mar. 06, 2021 6-9

4. if w = ǫ, M halts without accepting.

5. Repeat :

(a) Non-deterministically select a position i in α.

(b) Non-deterministically select a production β → γ of G.

(c) If β appears beginning in position i of α, replace β by γ there.

If the sentential form is longer than w, LBA halts without accepting.

(d) Compare the resulting sentential form on track 2 with w on track 1. If they
match, accept. If not go to step 1.

Part 2. If there is a linear bounded automaton M accepting the language L, then there is
a context sensitive grammar generating L− {ǫ}.

Following is the approach to proof. Let the grammar of the following language simulates
the moves on LBA.

1. Derivation simulates moves of LBA

2. Three can be three types of productions in this grammar:

(a) Productions that can generate two copies of a string in Σ∗, along with some
symbols that act as markers to keep the two copies separate.

(b) Productions that can simulate a sequence of moves of M . During this portion
of a derivation, one of the two copies of the original string is left unchanged; the
other, representing the input tape to M , is modified accordingly.

(c) Productions that can erase everything but the unmodified copy of the string,
provided that the simulated moves of M applied to the other copy cause M to
accept.

Example 6.12 Show that the language L = {anbncn | n ≥ 0} is context-sensitive.

The production rules, we will be making in use are listed without any specific order as,

1. S → abc | aAbc

2. Ab → bA

3. Ac → Bbcc

4. bB → Bb

5. aB → aa | aaA
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For w = aabbcc, derivation can be obtained as follows:

S ⇒ aAbc ⇒ abAc ⇒ abBbcc

⇒ aBbbcc ⇒ aabbcc

Note that above strings also also be generated using the set of productions: {S → SBc |
abc, cB → Bc, bB → bb}. The reason for this being – we can always transform one grammar
into other through simplification, normal forms, and reductions. We note that both of these
grammars are context sensitive grammars.

The limitation (of size of storage) of LBA makes the LBA a somewhat more accurate model
of computers that actually exists than a Turing machine, whose definition assumes unlimited
tape.

Theorem 6.13 The halting problem is solvable for linear bounded automata.

Proof: Our argument here will be based upon the number of possible configurations for
an LBA M . Let’s assume M has one track (this is allowed because one can use additional
tape symbols to simulate tracks as we did with Turing machines), l instructions (|Q| = l),
an alphabet of Γ tape symbols, and an input tape which is |w| = n characters in length.
The M has same configuration as a Turing machine and consists of followings:

1. an instruction (current state),

2. the tape head’s position, and

3. the content of the tape.

For example, wiqiwj , where current instruction is qi, head position is first symbol of wj ,
and content of tape is wiwj . We now ask: how many different configurations can there be
there? It is not too difficult to find out. With |Gamma∪V | = m, symbols and a tape which
is |w| = n squares long, we can have only mn different tapes. The tape head can be on any
of the n squares and, we can be executing any of the l instructions. Thus there are only
mn ∗ n ∗ l possible different configurations for the LBA M .

Let us return to a technique we used to prove the pumping lemma for finite automata. We
observe that if the LBA enters the same configuration twice then it will do this again and
again, indicating that it is stuck in a loop! The theorem follows from this statement. We
only need to simulate and observe the LBA for n×mn × l steps.

If M has not halted within mn ∗ n ∗ l steps, it must be in a repeating configuration, and
therefore looping. We can therefore decide after this number of steps whether or not the
input string will be accepted or rejected. The The halting problem is solvable for linear
bounded automata, as the following is is decidable:

HaltLBA = {< M,w >| M is an LBA and M halts on w.}
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As linear-bounded automata are recognizers for context-sensitive languages, and every
context-sensitive language must be recursive. Since, we are able to distinguish the pres-
ence of loop (which in TM we cannot !), the halting problem is solvable for LBA.

From the above proof, we also get two corollaries.

Corollary 6.14 The membership problems for sets accepted by linear bounded automata
are solvable.

Proof: The above can also be expressed by,

ALBA = {< M,w >| M is an LBA and M accepts w},

which is decidable. That is, an LBA that stops on input w must stop in at most |w| steps.

Corollary 6.15 The sets accepted by linear bounded automata are all recursive.

Theorem 6.16 Every CSL is Recursive.

Proof: Construct a 3-tape nondeterministic TM M to simulate the derivation of G.

1. First tape holds the input string.

2. Thirds tape is for the derivation.

3. Second tape holds the sentential form generated by the simulated derivation.


