Decidability

Prof. (Dr.) K.R. Chowdhary *Email: kr.chowdhary@iitj.ac.in*

Formerly at department of Computer Science and Engineering MBM Engineering College, Jodhpur

Monday 10th April, 2017

We may be interested in following questions:

"Is a number number perfect square?"

"Is number prime?"

"Does a graph has cycle?"

"Does the computation of TM

halt before 25th transition?" Each of these general question describe a decision problem. A decision problem *PP* is a set of *related questions* p_i , each of which has es/no answer. For example: p_0 : Is 0 a perfect square?

 p_1 ls 1 a perfect square?

 p_2 is 2 a perfect square?

. . .

Each of the p_i is an instance of the problem P. The solution of a decision problem P is an algorithm that determines the answer of every question $p \in P$. A decision problem is decidable, if it has a solution.

An algorithm that solves decision problem should be:

- Complete: correct answer is given for every problem instance
- Mechanistic: finite sequence of instructions, each can be carried out without requirement of insight, ingenuity, or guesswork.

• Deterministic: With identical input, the same computation is carried.

A procedure having the properties of complete, Mechanistic, and deterministic, is called *effective procedure*. A standard TM is an effective algorithm if it is, Mechanistic, deterministic, and complete. However, it is complete only if, it halts on every input.

Decidable language-3

- $A_{EQDFA} = \{ \langle A, B \rangle | A \text{ and } B \text{ are DFAs and } L(A) = L(B) \}$
- Equivalence problem: Test whether two DFAs recognize the same language.
- Theorem: A_{EQDFA} is decidable languages
- F = "On input $\langle A, B \rangle$, where A and B are DFAs:
 - construct DFA $L(C) = (L(A) \cap \overline{L(B)}) \cup (L(B) \cap \overline{L(A)})$ $(A = B \Rightarrow C = \phi)$
 - **②** Run *TM T* for deciding A_{EQDFA} on input $\langle C \rangle$
 - If T accepts, Accept; otherwise reject. "

Acceptance problem: A_{TM}

Input: A *TM*'s description $\langle M \rangle$ and a string w for input to M.

- Output: Yes/No indicating if M eventually enters q_{accept} on input w.
- Acceptance of language consisting of tuples: ⟨M, w⟩,
 A_{TM} = {⟨M, w⟩|M is a Turing description and M accepts input w }.
 Is A_{TM} Turing recognizable?
- Defn. Turing Recognizable: A language A_{TM} is "Turing recognizable" if there exists a TM M such that for all w:
- If $\langle M,w
 angle\in A_{TM}$ then M eventually enter q_{accept}
- If $\langle M, w \rangle \notin A_{TM}$ then M eventually enter q_{regect} or M loops for ever.

Halting Problem

- Theorem: A_{TM} is Turing recognizable.
- U = "On input $\langle M, w \rangle$, where M is a TM and w is a string:
 - Simulate *M* on input *w*
 - If M ever enters accepts state, then U accepts; if M enters its reject state, U rejects"
 - U is universal TM
 - U keeps looping if M neither accepts or rejects
 - However, if $U \equiv M, A_{TM}$ is unsolvable (i.e., undecidable)
- A problem is decidable if some *TM* decides (solves) it.

Halting problem: Given a *TM M* and input string $\langle W, \langle m \rangle \rangle$, decide whether *M* halt on $\langle \langle M \rangle, w \rangle$?

• The instance of the problem is : $e_n(M)e_n(w)$. Halting = $\{e_n(M)e(w)|M \text{ halts on } w\}$ is not recursive.

Undecidability of A_{TM}

Proof by contradiction:

- Assume that ∃ some TM H that decides A_{TM}. That is, H accepts if M accepts w, and H rejects if M rejects w.
- Now we construct a TM D with H as subroutine. This calls H and determine what M does when the input to M is its own description < M >. However, after determining this, it outputs the opposite. That is, it rejects if M accepts, and vice-versa. Call this as H'.

- 1 Construct a *TM* D (having input $\langle M \rangle$) that outputs the opposite of the result of simulating *H* on input $\langle \langle M \rangle, M \rangle$.
- 2 Output the opposite of what H outputs, i.e., if H accepts, then reject, and if H rejects, then accept.
- The above can be rewritten as:
- If M accepts its own description < M >, then

H(< M >) accepts and $\therefore D(< M >)$ rejects

If M rejects its own description < M >, then

H(< M >) rejects and $\therefore D(< M >)$ accepts

- What happens if we run D on its own description < D >?
- From above: (substitute D for M), we have (see next slide)

Proving Undecidability of A_{TM}

If D accepts < D >: H(D, < D >) accepts and D < D > rejects If D rejects < D >: H(D, < D >) rejects and D < D > accepts • Which can be further simplified: If D accepts < D >: D < D > rejects If D rejects < D >: D < D > accepts

Hence, whatever is done, it must do the opposite. So there is a contradiction. So, D cannot exist. But, if H exists, we know how to make D. H cannot exist; so there is no TM that decides A_{TM}.

Proving Undecidability of A_{TM}

if D does not halt with input R(D) then halt

A different approach for A_{TM} as undecidable

- Preceding proof uses self-reference and diagonalization.
- To obtain table for diagonalization argument, consider that every $v \in \{0,1\}^*$ represent a *TM*. If v does not have form R(M), a one-state TM with no transition is assigned to v. Thus, TMs can be listed as $M_0, M_1, M_2, M_3, M_4, M_5, M_6, M_7, \ldots$ corresponding to $\varepsilon, 0, 1, 00, 01, 10, 11, 000.$
- Consider a table that lists TMs along the horizontal and vertical axes. The *i*, *jth* entry in table is:

 - $\begin{cases} 1 & \text{if } M_i \text{ halts when run with input } R(M_j) \\ 0 & \text{if } M_i \text{ does not halt when run with input } R(M_j) \end{cases}$

Diagonal elements are answers to the self-referential questions: Does M_i halt when run with itself?

Undecidable, decidable, recognizable, Unrecognizable:

- A_{CFG} is decidable
- A_{TM} is undecidable
- $L \in P(\Gamma^*)$ is unrecognizable, where $P(\Gamma^*)$ is uncountable
- $A_{TM} = \{w | M \text{ is a TM and } M \text{ does not accept } w\}$