
Decidability

Prof. (Dr.) K.R. Chowdhary
Email: kr.chowdhary@iitj.ac.in

Formerly at department of Computer Science and Engineering
MBM Engineering College, Jodhpur

Monday 10th April, 2017

kr chowdhary TOC 1/ 9

Decision Problems

We may be interested in following
questions:

“Is a number number perfect
square?”
“Is number prime?”
“Does a graph has cycle?”
“Does the computation of TM
halt before 25th transition?”

Each of these general question
describe a decision problem. A
decision problem PP is a set of
related questions pi , each of which
has es/no answer. For example:

p0: Is 0 a perfect square?

p1 Is 1 a perfect square?

p2 is 2 a perfect square?

. . .

Each of the pi is an instance of the
problem P . The solution of a
decision problem P is an algorithm
that determines the answer of every
question p ∈ P . A decision problem
is decidable, if it has a solution.

kr chowdhary TOC 2/ 9

Decision Problems

An algorithm that solves decision
problem should be:

Complete: correct answer is
given for every problem
instance

Mechanistic: finite sequence
of instructions, each can be
carried out without
requirement of insight,
ingenuity, or guesswork.

Deterministic: With identical
input, the same computation
is carried.

A procedure having the properties
of complete, Mechanistic, and
deterministic, is called effective
procedure. A standard TM is an
effective algorithm if it is,
Mechanistic, deterministic, and
complete. However, it is complete
only if, it halts on every input.

kr chowdhary TOC 3/ 9

Decidable languages

Decidable language-3

AEQDFA = {〈A,B〉| A and B are DFAs and L(A) = L(B) }
Equivalence problem: Test whether two DFAs recognize the same
language.
Theorem: AEQDFA is decidable languages
F = “On input 〈A,B〉, where A and B are DFAs:

1 construct DFA L(C) = (L(A)∩L(B))∪ (L(B)∩L(A))
(A= B ⇒ C = φ)

2 Run TM T for deciding AEQDFA on input 〈C 〉
3 if T accepts, Accept; otherwise reject. ”

Acceptance problem:ATM

Input: A TM’s description 〈M〉 and a string w for input to M.
Output: Yes/No indicating if M eventually enters qaccept on input w.
Acceptance of language consisting of tuples: 〈M ,w〉,
ATM = {〈M ,w〉|M is a Turing description and M accepts input w }.
Is ATM Turing recognizable?
Defn. Turing Recognizable: A language ATM is “Turing
recognizable”if there exists a TM M such that for all w:

- If 〈M ,w〉 ∈ ATM then M eventually enter qaccept
- If 〈M ,w〉 /∈ ATM then M eventually enter qregect or M loops for ever.

kr chowdhary TOC 4/ 9

Halting Problem

Theorem: ATM is Turing recognizable.

U = “On input 〈M ,w〉, where M is a TM and w is a string:
1 Simulate M on input w
2 If M ever enters accepts state, then U accepts; if M enters its reject

state, U rejects”
- U is universal TM
- U keeps looping if M neither accepts or rejects
- However, if U ≡M,ATM is unsolvable (i.e.,undecidable)

A problem is decidable if some TM decides (solves) it.

Halting problem: Given a TM M and input string 〈W ,〈m〉〉, decide
whether M halt on 〈〈M〉,w〉?

The instance of the problem is : en(M)en(w). Halting =
{en(M)e(w)|M halts on w } is not recursive.

R(M)w
Halting

machine

H

M does not halts

 with input w

M halts with

input w
accept

reject

kr chowdhary TOC 5/ 9

Undecidability of ATM

Proof by contradiction:

Assume that ∃ some TM H that decides ATM . That is, H accepts if
M accepts w, and H rejects if M rejects w.
Now we construct a TM D with H as subroutine. This calls H and
determine what M does when the input to M is its own description
<M >. However, after determining this, it outputs the opposite.
That is, it rejects if M accepts, and vice-versa. Call this as H ′.
Define D(<M >) =

1 Construct a TM D (having input <M >) that outputs the opposite
of the result of simulating H on input 〈〈M〉,M〉.

2 Output the opposite of what H outputs, i.e., if H accepts, then
reject, and if H rejects, then accept.
The above can be rewritten as:
If M accepts its own description <M >, then

H(<M >) accepts and ∴D(<M >) rejects
If M rejects its own description <M >, then

H(<M >) rejects and ∴ D(<M >) accepts
What happens if we run D on its own description < D >?
From above: (substitute D for M), we have (see next slide)

kr chowdhary TOC 6/ 9

Proving Undecidability of ATM

If D accepts < D >:

H(D,< D >) accepts and D <D > rejects

If D rejects < D >:

H(D,< D >) rejects and D < D > accepts

Which can be further simplified:

If D accepts < D >:

D < D > rejects

If D rejects < D >:

D < D > accepts

Hence, whatever is done, it must do the opposite. So there is a
contradiction. So, D cannot exist. But, if H exists, we know how to
make D. H cannot exist; so there is no TM that decides ATM .

kr chowdhary TOC 7/ 9

Proving Undecidability of ATM

R(M)w

M does not halts

 with input w

M halts with

input w
halt

loop

Halting

Machine

 H

R(M)R(M)COPY

R(M)

H’

loop

halt

M halts with

input R(M)

M does not

halt with

input R(M)

D

H’ has output in reverse

polarity of H.

COPY H’

loop

halt

D does not

halt with

input R(D)

D

R(D)

R(D)R(D)

D halts with

input R(D)

if D halts with input R(D) then loop

if D does not halt with input R(D) then halt

kr chowdhary TOC 8/ 9

A different approach for ATM as undecidable

Preceding proof uses self-reference and diagonalization.

To obtain table for diagonalization argument, consider that every
v ∈ {0,1}∗ represent a TM. If v does not have form R(M), a
one-state TM with no transition is assigned to v. Thus, TMs can be
listed as M0,M1,M2,M3,M4,M5,M6,M7, . . . corresponding to
ε,0,1,00,01,10,11,000.

Consider a table that lists TMs along the horizontal and vertical
axes. The i, jth entry in table is:

{

1 if Mi halts when run with input R(Mj)
0 if Mi does not halt when run with input R(Mj)

Diagonal elements are answers to the self-referential questions: Does Mi

halt when run with itself?
Undecidable, decidable, recognizable, Unrecognizable:

ACFG is decidable

ATM is undecidable

L ∈ P(Γ∗) is unrecognizable, where P(Γ∗) is uncountable
¯ATM = {w | M is a TM and M does not accept w}

kr chowdhary TOC 9/ 9

