P vs. NP Classes

Prof. (Dr.) K.R. Chowdhary
Email: kr.chowdhary@iitj.ac.in

Formerly at department of Computer Science and Engineering MBM Engineering College, Jodhpur

Monday $10^{\text {th }}$ April, 2017

Complexity of computation

- Adding two n-digit numbers: $n+1$ steps usually. But if we look at minor steps then $5 n+1$ steps(n additions of digits, n additions of carry, n comparisons if sum of two digits is greater than $10, n$ steps to print lower digit, n steps to save carry). The last step is for carry save from last sum.
Even further smaller steps are taken, it comes out to be $a n+b$, where a, b are constants, not dependent on n. Thus time complexity of add, is $\theta(n)$.
- Multiplication: To multiply x and y, one approach if add x to $0, y$ times. If both numbers are n digit long, then $\theta\left(n .10^{n}\right)$.
Other method is $\theta\left(n^{2}\right)$ complexity. The best known algorithm for multiplication is $\theta\left(n^{1.1}\right)$.
- Factoring: of n digit number. Some times not well defined, as $1001=77 \times 13$ or 91×11. To factor Z we need to divide it by range 2 to $Z-1$. If $|Z|=n$, complexity is 10^{n}. No solution like, $\theta(n)$ or $\theta\left(n^{c}\right)$, where c is constant, is available.

Complexity terms

- $\mathbf{T}(\mathbf{n})$: Time complexity of standard Turing Machine. Function $T(n)$ is called time-constructible if there exists a time-bound Deterministic TM that with input makes $|w|=n$ moves.
- T(n): Nondeterministic Turing machine Time complexity.
- S(n): Space complexity of standard Turing Machine. Function S(n) is called space-constructible, if there exists a space-bound standard TM, that for each input of length n, requires exactly $S(n)$ space.
- DTIME(T(n)): class of languages that have deterministic time complexity of $O(T(n))$.
- $\operatorname{NTIME}(\mathbf{T}(\mathbf{n}))$: class of languages that have nondeterministic time complexity of $O(T(n))$.

The class P

- Let $L \subseteq \Sigma^{*}$. L is polynomial if membership of w can be determined in polynomial function of n, where $|w|=n$. Polynomial time is in terms of number of transitions in TM. L is decidable in polynomial time if standard std TM M can decide L in $t c_{M} \in O\left(n^{r}\right)$, where r is natural number, not related to n. The family of L is Class-P.
- A language accepted by multi-tape TM in time $O\left(n^{r}\right)$ is accepted by STD TM in time complexity $O\left(n^{2 r}\right)$, which is also polynomial. This invariant shows the robustness of TM.
- P : Class of membership problems for the languages in

$$
\bigcup_{P(n)} D T I M E(P(n)) ; \text { where } P(\mathrm{n}) \text { is polynomial in } \mathrm{n} \text {. }
$$

1 Acceptance of palindromes: Output is YES if $w \in \Sigma^{*}$ is palindrome, else NO. Complexity Class=P.
2 Path problem in directed graphs: Input is $G=(V, E)$. Output is YES if there is a path from v_{i} to v_{j} in the graph, else NO. Complexity class $=\mathrm{P}$, as complexity $=O\left(n^{2}\right)$ due to Dijkstra's algorithm.
3 Deriviability in CNF: Input: CNF G, w, output=Yes, if $S \Rightarrow^{*} w$ else No. Complexity: $\mathrm{P}=$ yes.

The Class NP

- Definition: A language is in NP iff it is decided by some NDTM in polynomial time. NDTM guesses the alternatives.
- Polynomial solution for these are not known to exist.
- in NDTM the solution is selected nondeterministically rather than systematically examining all the possibilities. $\therefore P \subseteq N P$, because a P problem is also NP.
- NP : The class of membership problems for languages in

$$
\bigcup_{P(n)} N \operatorname{TIME}(P(n))
$$

Examples:

1. SATISFIABILITY problem: Input Boolean expression u in CNF, Output $=$ YES if there is an assignment that satisfies u else NO.Complexity: In P - Unknown, in NP - YES.
2. Hamiltonian path problem: Input directed graph G, Output: YES if there is a single cycle that visits all nodes, No other wise. Complexity: P-unknown, NP- YES. Hamiltonian path problem is in NP, but its solution can be verified in P.
3. Subset sum problem: Input: Set S, number k, output: Yes if there is $P \subseteq S$, whose toatl is k, else No. Complexity: P - unknown, NP -

- PRIMES $=\{x \mid x$ is prime $\}$, COMPOSITS $=\{y \mid y$ is Composite number $\}, \therefore$ PRIMES $=\overline{\text { COMPOSITS }}, \therefore$, if COMPOSITS is NP then PRIMES is Co-NP (Complement of NP).
- COMPOSITNESS can be determined by NDTM by guessing Nondterministically.
COMPOSITNESS is in NP but its solution can be verified in P time.
- Fermat's Little theorem for primality test: If p is prime and a is integer, then:
$a^{p} \equiv a(\bmod p)$, i.e., $a^{p}-a$ is evenly divisible by p. This problem is NP because exponential component a^{p}.
- Example: $2^{11}-2$ is divisible by 11 .
- Sets of primes are in NP but not in NP-complete, similarly the COMPOSITS. The language of PRIMES is $N P \cap C o-N P$, and hence of COMPOSITS also.
- Because, if that is not the case then $N P=C o-N P$.

Primality test and Compositeness

Theorem
 COMPOSITS are NP

Proof.

1 Input on NDTM $=p,|p|=n$. Guess a factor f of at most n bits ($f \neq 1, f \neq p$). This part is non-deterministic. The time taken by any sequence of choice is $O(n)$.
2 Divide p by f, check if remainder is 0 . Accept if so. Part 2 is deterministic $O\left(n^{2}\right)$ on STD 2-tape TM.

- Definition: If there is a polynomial time algorithm for one NP-problem, then all NP problems are solvable in P time, are called NP-complete.
This is because, if A is NP-complete, then all NP-problems are reducible to it. And, if $A \in P$, then all those $N P$ are P.
Adv: 1 . if one can be solved, then all rest are automatically solved,

2. One may choose only one of the most appropriate NP problem for solution.

Complexity classes-Time

Class	Machine	Time constraint
DTIME $(\mathrm{f}(\mathrm{n}))$	DTM	$\mathrm{f}(\mathrm{n})$
P	DTM	poly (n)
NTIME $(\mathrm{f}(\mathrm{n}))$	NDTM	$\mathrm{f}(\mathrm{n})$
NP	NDTM	poly (n)
EXPTIME	DTM	$2^{\text {poly }(n)}$

- EXPTIME : The class of membership problems for this languages in

$$
\bigcup_{P(n)} D T I M E\left(2^{P(n)}\right) .
$$

- Satisfiability is NP-complete. A Boolean expression $\phi=\{\bar{x} \wedge y) \vee(x \wedge \bar{z})$ is satisfiable for $\mathrm{x}=0, \mathrm{y}=1, \mathrm{z}=0$, as it evaluates ϕ to 1 (TRUE).
- SAT is languages of all satisfiable formulas, SAT $=\{\langle\phi\rangle \mid \phi$ is satisfiable Boolean formula \}. Cook-Levin theorem links the complexity of SAT problem to complexities of all problems in NP.
- Polynomial time reducibility: If problem A reduces to problem B, then solution of B can be used to solve A.

1. Definition: A function $f: \Sigma^{*} \rightarrow \Sigma^{*}$ is polynomial time computable if some polynomial TM M, which when started with input w, halts with $f(w)$ on tape.
2. Definition: Language A is polynomial reducible to lang. B, expressed as $A \leq_{p} B$, if \exists a polynomial function f such that $f: \Sigma^{*} \rightarrow \Sigma^{*}$ for every $w \in A \Longleftrightarrow f(w) \in B$.
3. To test whether $w \in A$, we use the reduction f to map w to $f(w)$ and then test whether $f(w) \in B$?
4. If one language is polynomial time reducible to a language already known to have polynomial time solution, we obtain a polynomial solution to original.

Polynomial reduction

Theorem
If $A \leq_{P} B$ and $B \in P$, then $A \in P$.
Proof.

- Let M be polynomial time algorithm deciding B, and f be polynomial time reduction from A to B. We describe polynomial time algorithm for M^{\prime} for A as follows:
- $M^{\prime}=$ Input w, step 1. compute $f(w)$ on TM R (reducer for f), step 2. Run M on input $f(w) . \therefore M^{\prime}$ is polynomial because each of above steps are polynomial (Note: Composition of two polynomial functions is polynomial).

NP-Complete and NP-Hard

- Definition: NP-Complete: A language B is NP-complete if it satisfies two-conditions: (1) $B \in N P$, (2) Every $A \in N P$ is polynomial time reducible to B, i.e.,

$$
B \in N P \wedge \forall A: A \in N P \wedge A \leq_{P} B \Rightarrow B \in \text { NP-Complete. }
$$

- A language Q is NP-hard if every $L \in N P$ is polynomially reducible to Q.
- $\forall L: L \in N P \wedge L \leq{ }_{P} Q \Rightarrow Q \in N P$ - hard.
- The NP-hard problem that is also NP is called NP-complete.
- Co-NP is complement of $N P, \therefore$ Co- $N P$ is set of all the complements of all the NP problems.

NP-Complete Theorem

Theorem
If B is NP-Complete and $B \in P$, then $P=N P$.
Proof.

- If B is NP-Complete then every problem in NP is polynomially reducible to B. Since $B \in P, \therefore$, every NP problem is polynomially reducible to to B, which is P. Hence, every NP is P, i.e. $P=N P$.

Once we get NP-Complete, other NP problems can be reduced to it. However, establishing first NP-Complete problem is difficult.

NP-Complete Theorem

Theorem
If $B \in N P$-Complete and $B \leq_{P} C$ for $C \in N P$, then $C \in N P$-Complete.
Proof.

- We must show that every $A \in N P$ is polynomially reducible to C.
- Because B is NP-Complete, \therefore, every $A \in N P$ is polynomially reducible to B. (as per property of NP-Complete). And B in turn is polynomially reducible to C (given).
- Because the property of polynomial is closed under the composition, We conclude that every $A \in N P$ is polynomially reducible to C. Therefore C is NP-Complete.

Cook-Levin Theorem

Theorem
SAT is NP-Complete.
Proof.
Proof Idea: It is easy to show that SAT is NP, the hard part is to show that any language in NP is polynomially reducible to SAT.

- \therefore we construct a polynomial time reduction for every $A \in N P$ to SAT.
- Reduction for a language A takes input w and produces Boolean formula ϕ that simulates the NP machine for A on input w.
- If machine accepts, ϕ has a satisfying assignment, that corresponds to accepting computation, otherwise NO.
- $\therefore w \in A$ iff ϕ is satisfiable.

NP-Complete problems: 3-SAT, Hamiltonian path problem, subset construction problem.

Space - Complexity

- $\mathbf{S}(\mathbf{n})$: The function $S(n)$ is called space constructible if there exists an $S(n)$ space-binded Det. TM that for each input $|w|=n$ requires exactly $S(n)$ space. $\therefore, S(n)=$ Space complexity of a Det. Turing Machine.
- DSPACE(S(n)): class of languages that have deterministic space complexity of $O(S(n))$.
- PSPACE: The class of membership problems for the languages decidable in polynomial space on deterministic TM:

$$
P S P A C E=\bigcup_{k} D S P A C E\left(n^{k}\right)
$$

class	machine	Space constraint
DSPACE $(f(n))$	DTM	$f(n)$
L	DTM	$O\left(\log _{n}\right)$
PSPACE	DTM	poly (n)
EXPSPACE	DTM	$2^{\text {poly }(n)}$
NSPACE $(f(n))$	NDTM	$\mathrm{f}(\mathrm{n})$
NL	NDTM	poly (n)
NEXPSPACE	NDTM	$2^{\text {poly }(n)}$

Space - Complexity

- $\operatorname{DSPACE}(f(n))=\{L \mid L$ is decidable by $O(f(n))$ space on DTM $\}$.
- $\operatorname{NSPACE}(f(n))=\{L \mid L$ is decidable by $O(f(n))$ space on NDTM $\}$
- Savitch's Theorem: If a NDTM uses $f(n)$ space, it can be converted into a DTM that uses $f^{2}(n)$ space.
- As per Savitch's theorem: PSPACE $=$ NSPACE, EXPSPACE $=$ NEXPSPACE.
- For NDTM, if $f(n)$ is maximum number of tape-cells scan in any branch of computation, then its complexity if $f(n)$.
- SAT which is NP - Complete in time, is linear space. (because is reusable).
- $P S P A C E=N S P A C E, P \subseteq P S P A C E . N P \subseteq$ NSPACE, $\therefore, N P \subseteq P S P A C E$.
- $\therefore, P \subseteq N P \subseteq P S P A C E=N P S P A C E \subseteq E X P T I M E$.

