
4CS4-6: Theory of Computation (Context-free languages and Grammars)

Lecture 13: March, 11 & 12, 2020

Prof. K.R. Chowdhary : Professor of CS

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal

publications. They may be distributed outside this class only with the permission of the

Instructor.

13.1 Closure properties of Context-free languages

Like closure properties studied earlier for regular languages, the context-free languages are
also closed on certain operation. In the following, we prove these properties.

Theorem 13.1 If L1 and L2 are context-free languages then L1∪L2, L1L2 and L∗

1
are also

context-free languages.

Proof: This can be proved, almost on the similar lines of regular and finite automata
discussed earlier. To prove that L1 ∪ L2, L1L2, and L∗ exists in the form of context-free
languages, it is required to find out corresponding CFG for each of these cases.

Let us assume the CFG corresponding to L1, L2 are

G1 = (V1,Σ, S1, P1),

G2 = (V2,Σ, S2, P2).

Case I (For L1 ∪ L2): Let G = (V,Σ, S, P) be union CFG that generates L1 ∪ L2. Let V
and P be defined as

V = V1 ∪ V2 ∪ {S},

P = P1 ∪ P2 ∪ {S → S1 | S2}.

If there is a string x ∈ L(G1) then S1 generates x, i.e., S1 ⇒∗

G1
x. Similarly, for y ∈ L(G2),

S2 ⇒∗

G2
y. In the case of x, union CFG first uses the production S → S1, then continues with

the derivation of x in G1. While in the case of y, the union CFG first uses the production
S → S2 first, then continues with the derivation of y in G2. Therefore, L(G1) ⊆ L(G),
L(G2) ⊆ L(G), which can be combined to give L(G1) ∪ L(G2) ⊆ L(G).

On the other hand, if x is derivable from a production in G, the derivation must start with,

S ⇒ S1, or

S ⇒ S2.

13-1

13-2 Lecture 13: March, 11 & 12, 2020

For S ⇒ S1, all subsequent productions will be in G1. Since V1 ∩ V2 = φ, therefore,
x ∈ L(G1). Similar is case with y ∈ L(G2). Hence, {x} ∪ {y} ∈ L(G1) ∪ L(G2), which is
L(G) ⊆ L(G1) ∪ L(G2).

Case II (For L1L2): Let G = (V,Σ, S, P) be a CF Grammar, which generates the CF
language L1L2. Let G1, G2 be the CFGs corresponding to L1, L2 respectively. Let V1∩V2 =
φ. Various components of G can be specified as follows:

V = V1 ∪ V2 ∪ {S},

P = P1 ∪ P2 ∪ {S → S1S2}.

Let x1 ∈ L(G1), x2 ∈ L(G2), and x = x1x2 ∈ L(G1)L(G2). Then x ∈ L(G) can be derived
as follows:

S ⇒ S1S2 ⇒∗

G1
x1S2 ⇒∗

G2
x1x2 = x,

where, S1S2 ⇒ x1S2 is derivation in G1, and x1S2 ⇒∗ x1x2 is a derivation in G2. On the
other hand if x can be derived from S1S2 and therefore x = x1x2, where x1 can be derived
from S1 in G and x2 can be derived from S2 in G. Since V1 ∩ V2 = φ, the above S1x1

derivable from G implies it derivable from G1. Similarly x2 derivable from G implies that
it is derivable from G2. Hence x = x1x2 ∈ L(G1)L(G2).

Case III (For L∗

1
): For this it is required to construct G = (V,Σ, S, P), which generates

L∗

1
. Let V = V1 ∪ {S} and S /∈ V1.

The language L∗

1
will contain strings of the form x = x1x2 . . . xn, where xi ∈ L. Since xi can

be derived from S1, for G it is only required to get these strings derived from S. Therefore,
a production in G in terms of production of G1 can be specified as,

S → S1S | ε

Hence, the production in G can be expressed as,

P = P1 ∪ {S → S1S | ε}.

For x to be member of L(G), x = ε or x can be derived from some string x∗

i ∈ L(G1). In
the later case, the only productions in G are those that exist in G1. Therefore, x ∈ L(G1)

∗.
This proves the theorem.

13.2 Ambiguous Grammars and Languages

One special desirable feature in a grammar for a programming language is freedom from
ambiguity. A CFG G is said to be ambiguous if and only if some string in L(G) has two
distinct left-most derivations. A CFG G is said to be inherently ambiguous if and only if

Lecture 13: March, 11 & 12, 2020 13-3

every equivalent CFG is ambiguous. A CFG is said to be structurally ambiguous if and
only if some string in L(G) has two distinct derivation-trees that are the same except for
non-terminal labels.

There is extensive interest in ambiguity of natural languages as well as context-free lan-
guages. Some of the known results are:

1. it is recursively unsolvable whether an arbitrary grammar for a language is ambiguous;

2. there exists inherently ambiguous languages, for example,

{aibjcidk | i, j, k ≥ 1} ∪ {aibjckdj | i, j, k ≥ 1},

3. no regular language is inherently ambiguous.

The above considerations motivate the study of ambiguity in context-free languages. Given
a grammar G = (Σ, V, S, P), a word w is said to be ambiguously derivable if there exists
at least two derivations of w from S whose associated generation trees are different. A
grammar G is said to be ambiguous if there exists an ambiguously derivable word in L(G),
and is otherwise unambiguous.

Definition 13.2 Unambiguous. A CFG is unambiguous if for every w ∈ L(G) there is

a unique parse-tree in G with yield w.

Definition 13.3 Inherently ambiguous. A language L is said to be inherently ambiguous

if there is no unambiguous grammar for L.

Following are additional terms related to ambiguity.

• The degree of ambiguity of a sentence is the number of its distinct derivation-trees.

• A sentence is unambiguous if its degree of ambiguity is unity.

• A grammar is unambiguous if each of its sentences is unambiguous.

• A grammar has bounded ambiguity if there is a bound b on the degree of ambiguity
of any sentence of the grammar.

• A grammar is reduced if every non-terminal appears in derivation of some sentence.

If T1 and T2 are two distinct generation trees, then their associated leftmost derivations are
distinct; the converse also holds. Thus a word is ambiguously derivable if and only if it
has two leftmost derivations. It is well established that there is no decision procedure for
determining whether an arbitrary grammar is ambiguous. Also there is no decision procedure
(i.e., it is unsolvable) for determining if an arbitrary language is inherently ambiguous. In
other words, there is no algorithm for determining of an arbitrary language whether it is
generated by some unambiguous grammar. Since parse-tree is a semantics expression of
generated language string, the two different parse-trees represent two different meanings of
the generated string.

13-4 Lecture 13: March, 11 & 12, 2020

Given a grammar G = (V,Σ, P, S), a word w is said to be unambiguously derivable if
there exists two derivations of w from S, whose associated generation trees are different. A
grammar G is said to be ambiguous if there exists an ambiguously derivable word in L(G),
and is otherwise unambiguous. A language L is said to be inherently ambiguous if there is
no unambiguous grammar for L.

Example 13.4 Show that grammar with productions {S → a, S → b, S → SS}, is ambigu-

ous.

We show following two derivation-trees 13.1(a), (b) for the same sentence aba, which, as per
the definition, concludes that this grammar is ambiguous.

S

a

b

S S

S S

S

S S

S S

a b

a

a

(a) (b)

S ⇒ SS
⇒ SSS

⇒ aSS

⇒ abS
⇒ aba

S ⇒ SS
⇒ aS

⇒ aSS

⇒ abS
⇒ aba

Figure 13.1: (a) Parse-tree I for sentence aba, (b) Parse-tree II for the same sentence.

Example 13.5 Let us consider the grammar for arithmetic expressions with productions

given below.

E → E + E | E ∗ E | (E) | a.

For the sake of simplicity only two operations: ’+’ and ’∗’ have been considered for this
purpose as these are sufficient to express the ambiguity presence in the generated arith-
metic expressions. Let us generate the string a+ a ∗ a. The corresponding derivations and
derivations trees are shown in Fig. 13.2(a), (b).

The Fig. 13.2(a) shows that 2nd and 3rd term in the expression are to be multiplied and then
the result is to be added into the first term. Whereas the derivation-tree in Fig. 13.2 shows,
first and second terms of the expression are to be added together first and then the result
of this is to be multiplied with the third term. Obviously, the two derivations represent
different meanings of the expression a + a ∗ a. Therefore, this grammar is ambiguous and
the corresponding language is ambiguous too. �

An ambiguity in ALGOL 60, for example, is

Lecture 13: March, 11 & 12, 2020 13-5

a

E E

E E

E

E E

E

E E +

+ ∗

∗a

a a a

a

E ⇒ E + E
⇒ a+ E

⇒ a+ E ∗ E
⇒ a+ a ∗ E
⇒ a+ a ∗ a

(a) (b)

E ⇒ E ∗ E
⇒ E + E ∗ E

⇒ a+ E ∗ E
⇒ a+ a ∗ E
⇒ a+ a ∗ a

Figure 13.2: (a) Derivation and parse-tree for a + a ∗ a, (b) Derivation and parse-tree for
the same expression.

if β1 then α if β2 then Σ1 else Σ2,

where β1, β2 represents any Boolean expressions,α a statement, and Σ1,Σ2 are unconditional
statements.

Ambiguous grammars represent different parse-trees for the same expression. The different
parse-trees always represent different meanings. Therefore, it is necessary to remove the
ambiguity in the CFGs. One way to represent the ambiguity in a language expression is to
consider the precedence of operators. Thus, in a+a∗a, the part a∗a needs to be processed
before the ’+’ operator. Hence, in the parse-tree answer a ∗ a is computed first. However,
when there are identical operators they are grouped from left to right. For example, a+a+a
may be grouped as ((a+ a) + a) or (a+ (a+ a)). In two cases the parse-tree are different,
but they will evaluate the same result.

Naturally, we are interested to have some algorithm to remove all kinds of ambiguities in
a CFG. However, it is recursively unsolvable whether an arbitrary grammar for a language
is ambiguous. In other words, there cannot be an algorithm to determine if an arbitrary
language is generated by some ambiguous grammar or not.

In fact, there are CFLs that have ambiguous CFGs, but removal of ambiguity for such gram-
mar is impossible. It is not always true that ambiguity can be removed from a grammar.
However, an ambiguous grammar can always be converted into unambiguous grammar by
some changes in it. Sometimes, ambiguous grammars can be made unambiguous by adding
some non-terminal symbols through process called disambiguation so that for a given ex-
pression there is one parse-tree and one derivation only.

Example 13.6 Disambiguate the CFG G = (V,Σ, S, P), where,

13-6 Lecture 13: March, 11 & 12, 2020

V = {E}

Σ = {(,),+, ∗, a}

S = {E}

P = {E → E + E,E → E ∗ E,E → (E), E → a}.

This grammar is ambiguous as it generates two difference parse-trees for the arithmetic
expression a+ a → a. Following modifications can be made in G to disambiguate it.

V = {E, T, F},

P = {E → E + T | T, T → T ∗ F | F, F → a | (E)}

The Σ and S remain unchanged.

The parse-tree for a+ a ∗ a are shown in Fig. 13.3.

E T

E

T F

+

∗

a

a a

T

F

Figure 13.3: Parse-Tree for an unambiguous language

In the rewritten grammar, for any expression containing “+” and “∗”, the parse-tree will
situate “∗” deeper in the tree, i.e., closer to the terminals, than the “+”. Thus, in effect,
forcing the evaluation of “∗” before the evaluation of “+”.

We note that no other derivation and parse-tree are possible for this string. Hence, the
modified grammar is unambiguous.

E ⇒ E + T ⇒ T + T ⇒ F + T ⇒ a+ T

⇒ a+ T ∗ F ⇒ a+ F ∗ F ⇒ a+ a ∗ F

⇒ a+ a ∗ a.

Similarly, if a ∗ a+ a is expression, the derivation is as follows:

E ⇒ E + T ⇒ T + T ⇒ T ∗ F + T ⇒ F ∗ F + T

⇒ a ∗ F + T ⇒ a ∗ F + T ⇒ a ∗ a+ T ⇒ a ∗ a+ a.

