
4CS4-6: Theory of Computation (Normal Forms of Context-Free Grammars)

Lecture 15: March, 19 & 20, 2020

Prof. K.R. Chowdhary : Professor of CS

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal
publications. They may be distributed outside this class only with the permission of the
Instructor.

15.1 Introduction

This lecture note will show some normal formats of context-free grammars that are capable
to generate all the context-free languages. Accordingly, we will be interested in transfor-
mation of any grammar into these normal forms. Definition of CFG does not impose any
restrictions on the right hand side of the productions. However, there are ways to impose
restrictions on the productions without affecting the generative power of the grammar. If
G is a CFG, its corresponding context-free language L(G) can be generated with following
restrictions on G:

1. Each variable and each terminal symbol of G appears in the derivation of some word
of L(G).

2. There are no productions of the form A → B, called unit production, where A and B
are variables.

3. If ε /∈ L(G), then there is no need of productions of the form A → ε, where A is a
variable symbol.

In addition, there are some normal forms, if applied on the grammars, generate the same
language as the original grammar.

Definition 15.1 Chomsky Normal Form. A context-free grammar G = (V,Σ, S, P) is
in Chomsky normal form (CNF) if each production is one of these forms:

A → BC | a, (15.1)

where A,B,C ∈ V , and a ∈ Σ.

Definition 15.2 Greibach Normal Form. For a CFG G = (V,Σ, S, P) with ε /∈ L(G)
is Greibach normal form (GNF) if all the production rules are of the form,

A → aα. (15.2)

where α ∈ V ∗ and a ∈ Σ.

15-1

15-2 Lecture 15: March, 19 & 20, 2020

If a CFG is in normal form then it cannot have infinite left-going structure. In addition, using
normal-form we can give particularly elegant proofs of the connection between context-free
languages and, pushdown-store machines.

15.2 Transformation of Grammars

15.2.1 ε-Productions

The productions of the form A → ε are called ε-productions (null-productions). If L(G)
contains the ε-strings, certainly all the productions of the form A → ε cannot be eliminated
from a CFG G. However, if there are no null-strings in L(G), it is possible to eliminate all
the ε− productions from the grammar. However, if ε ∈ L(G), then we could eliminate all
the null productions (null rules) and get a grammar for L(G)− ε.

The method for removing the null productions consists finding a variables A for which
A ⇒∗ ε holds. In that case, the variable A is called nullable. In such cases, each production
of the form B → X1X2 . . .Xn can be replaced by production formed by eliminating some
subsets of Xi that are nullable. But if there is a production like B → ε, it is not considered
nullable even if all Xi in B → X1X2 . . . Xn are nullable.

Let L be a context-free language and G = (V,Σ, S, P) be the corresponding context-free
grammar with {ε} ⊆ L(G). It is possible to obtain G′ = (V ′,Σ, S′, P ′) using G, with no
ε-productions such that G′ will generate the same language L such that L(G′) = L(G)−{ε}.

Definition 15.3 Let G = (V,Σ, S, P) be a context-free grammar, and let A,B ∈ V . Then
B is said to be reducible from A if A ⇒∗ B for α, β ∈ V ∗.

Example 15.4 Suggest an algorithm to find which symbols are nullable (derives ε)?

Initially, mark all variables A with production A → ε. If there is a production A →
B1B2 . . . Bm, where all Bi’s are nullable, then mark A as nullable. This can be implemented
in linear time (for each production of the form A → B1B2 . . . Bm, assign an integer denoting
the number of nullable variable on the right hand side, which is zero initially; for each
variable A, store a list of pointers to all productions whose right hand side containing A,
and when A becomes nullable, update the corresponding counters).

15.2.2 Useless Symbols in Productions

Certain symbols from the grammar can be eliminated without affecting the generating
capability of the grammar. At the same time it simplifies the grammar. Let G = (V,Σ, S, P)
be the CFG. A symbol X ∈ V is called a useful symbol if there is a derivation like

S ⇒∗ αXβ ⇒∗ w,

where α, β ∈ (V ∪ Σ)∗. The X is useful because it appears at least in one derivation from
S to a word w ∈ L(G). If this is not the case, then X is useless symbol. The justification
for this is that a terminal string must be derivable through X .

Lecture 15: March, 19 & 20, 2020 15-3

Another condition for X to be useful is that it should derive a string w ∈ Σ∗, i.e., X ⇒∗ w.
These two conditions are necessary, but they are not sufficient. However, the usefulness of
a symbol has to be tested in two steps above.

In the productions given below variable B is not reachable through derivations from S,
hence it is useless. The production B → bB is called useless production.

S → aSb | ε,

B → bB.

When productions that do not take part in the derivation process are removed, it results to
a simplified grammar.

Consider another set of productions P for a grammar as given below.

S → aSb | A | ε,

A → aA.

Here, the production S → A has no role because A cannot be eliminated in the sentential
form when generating terminal string. Hence, productions S → A, A → aA both can be
removed. The simplified grammar for above is therefore,

S → aSb | ε.

Example 15.5 Consider the following productions in a grammar G,

S → A

A → aA | ε

B → bA

where S is starts symbol. We note that variable B does not appear in the sentential form
during any derivation string. Though a derivation from B leads to primary string but this
is of no use when B does not appear in any derivation string w ∈ L(G), where S ⇒∗

w. Therefore, variable B and production B → bA can be eliminated without affecting the
generating power of grammar G.

Example 15.6 Remove the useless symbols and productions from context-free grammar
G = (V,Σ, S, P), where

V = {S,A,B,C}

Σ = {a, b}

S is start symbol, and

P = {S → aS | A | B,A → a, C → bb, B → aBa}.

15-4 Lecture 15: March, 19 & 20, 2020

Let us first identify the productions that can lead to terminal string. These are,

A → a

C → bb

S → A.

Thus, variables that can lead to terminal strings are A,C, S. We note that variable B does
not lead to terminal string. Hence it can be removed. Let G′ = (V ′,Σ, S, P ′) be a new
grammar after variable B and its corresponding productions have been removed. Similarly,
the variable C cannot be reached from the start symbol, hence C and its productions can
be removed. The tuples of G can be defined as follows.

V ′ = {S,A,C}

Σ = {a, b}

P ′ = {S → aS | A,A → a}.

Consequently, the simplified grammar is given as

G′ = ({S,A}, {a}, S, P ′).

Example 15.7 Let G = (V,Σ, S, P) be a CFG where,

V = {A,B}

Σ = {a, b, c}

S = {A}

P = {A → a | aaA | abBc,B → abba | b}.

Simplify the grammar G.

Let us assume that using the substitution process given in the theorem ?? above, we get an
equivalent grammar

G = (V ′,Σ, S, P ′)

where V ′ = {A}, and P ′ is defined comprising of following productions:

A → a | aaA | ababbac | abbc

It can be easily verified that every string that is generated by G can also be generated by
G′. Hence it proves that L(G) = L(G′).

Theorem 15.8 Given a CFG G = (V,Σ, S, P) with L(G) 6= φ, there exists an equivalent
CFG G′ = (V ′,Σ, S, P ′) such that for every variable A ∈ V ′ there is derivation S ⇒∗

αAβ ⇒∗ w, for w ∈ Σ∗ where α, β ∈ (Σ ∪ V ′)∗. In conclusion, the equivalent CFG G′ does
not contain any useless symbols or productions.

Lecture 15: March, 19 & 20, 2020 15-5

Proof: As we discussion above, a useless symbol is one which does not appear in any
derivation S ⇒∗ w of, w ∈ L(G). Hence, useless symbol is one, which is not reachable.

Assume that initially, V ′ and P ′ are null. First we consider variables Ai ∈ V such that
Ai → w ∈ P . For this A ⇒∗ w holds, hence we move Ai to V ′ and Ai → w to P ′.

Next consider Aj → X1X2 . . . Xn ∈ P , where each Xi is either a terminal or variable. In
case of variable Xi = Ai, it is already placed in V ′. Hence, a terminal string can be derived
with a derivation beginning with Aj ⇒ X1X2 . . . Xn. The above situation is illustrated in
productions tree (parse tree) shown in Fig. 15.1.

Consider the level k in this tree. Since Ai → ab, therefore this production is moved into P ′

and variable Ai is made part of V ′ by,

P ′ = P ′ ∪Ai → ab

V ′ = V ′ ∪ {Ai}.

Level k − 2

Level k − 1

Level k

A

e

dc

Aj

Ai

b
a

Figure 15.1: Derivation-tree

Similar process is repeated for all the variables at this level. Next we move to a lower level
in the tree, say, at k − 1. The symbols Ai are already in V ′ (see Fig. 15.1). Now, same
process is repeated at k−1 level to move the terminal symbols (Aj) into V ′ and productions
(Aj → Aicd) into P ′. And so on, it is repeated up to level 1 in the parse-tree.

This results to generation of CFG G′. It should be noted that variables and productions that
do not participate in derivation when started from the root S, gets automatically eliminated.

An algorithm, which iteratively computes V ′ and P ′ is given as algorithm 1. The algorithm
cannot terminate while there remains variables Aj in the V having production like Aj →
X1X2 . . . Xn ∈ P where Xi ∈ (Σ ∪ V ′).

In the next phase, we construct a variable dependency graph for G′ to find out all the
variables and terminals that cannot be reached from S. Next, delete all such non-reachable
variables and terminals, and obtain G′ = (V ′,Σ, S, P ′). Therefore, V ′ ⊆ V , P ′ ⊆ P and
G′ ⊆ G. However, G′ will generate the same strings that could be generated using G,
because the useless symbols and productions were not contributing in generation of strings
earlier also. Therefore, L(G′) = L(G), and G′ and L(G) are simplified versions of G and
L(G), respectively.

15-6 Lecture 15: March, 19 & 20, 2020

Algorithm 1 Construction of an equivalent simplified grammar.

1: V ′ = {Ai | Ai → w,w ∈ Σ∗}
2: V = V − V ′

3: P ′ = {A → w}
4: P = P − P ′

5: while there is Aj → X1X2 . . .Xn ∈ P for X(i=1,n) ∈ Σ ∪ V ′) do
6: V ′ = V ′ ∪Aj

7: P ′ = P ′ ∪ {Aj → X1X2 . . . Xn}
8: V = V − {Aj}
9: P = P − {Aj → X1X2 . . .Xn}

10: end while

15.2.3 Removing unit Productions

In simplification of context-free grammars another important step is to make the given
context-free grammar as unit-rule free. This is essential for the applications in compilers.
As the compiler spends time on each rule used in parsing by generating semantic routines,
having unnecessary unit-rules will increase compiler’s time.

Lemma 15.9 Let G be a CFG, then there exists a CFG G′ without unit rules such that
L(G) = L(G′).

Elimination of unit productions is somewhat similar to elimination of ε-productions. When
unit productions are eliminated we must be sure that same strings can be generated by
the grammar as earlier. Sometimes, there is requirement to add a production when a unit
production is removed. Consider the following productions.

A → B

B → bB | c

The unit of production A → B can be deleted and we add production:

A → bB | c

For this we need a systematic view to find all the pair of variable (A,B) such that A ⇒∗ B.
If there are no null productions in G, such pairs can be easily located by a sequence of unit
productions. But, if these are null productions, then finding unit productions is slightly
difficult, because A ⇒∗ B may be derived through A ⇒ BC ⇒ B, where C → ε. Therefore,
before removing the unit productions, it is necessary that all the ε-productions be removed.
Thus, first G′ is obtained from G so that G′ is free from ε-productions, and L(G) = L(G′).

If G (or G′) has no ε-productions, we can find for each variable A, all variables B such that
there is a derivation A ⇒∗ B. This can be achieved by drawing dependency graph with an
edge (C,D) whenever the grammar has a unit production C → D. Hence, A ⇒∗ B holds
whenever there is walk-through in the graph from A to B.

Consider that G = (V,Σ, S, P) be a grammar with some unit productions but no ε-
productions, and G′ = (V ′,Σ, S, P ′) be an equivalent grammar without unit productions.
The G′ can be constructed as follows.

Lecture 15: March, 19 & 20, 2020 15-7

1. First add into P ′ all non-unit productions of P ,

2. Next, for all A and B satisfying A ⇒∗ B, we add into P ′ the production A → α1 |
α2 | · · · | αn,

where, B → α1 | α2 | · · · | αn is already in P ′. Since this is already in P ′, none of the αi

are single variables because only the non-unit productions were added into P ′ in advance.
Therefore, no unit productions are created in P ′. The same process can be used for adding
the remaining productions from P to P ′. The context-free languages L(G) and L(G′) are
equal as per the following theorem.

