
4CS4-6: Theory of Computation (Chomsky NF, and Grebach Normal Forms)

Lecture 16: March, 23 & 25, 2020

Prof. K.R. Chowdhary : Professor of CS

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal
publications. They may be distributed outside this class only with the permission of the
Instructor.

16.1 Normal Forms of CFG

The CFGs have no restrictions on the right hand side part of every production A → α,
where α ∈ (V ∪ Σ)∗. The normal forms on these grammars state that all the context-
free grammars are equivalent to grammars with some restrictions on the right side of each
production. Many proofs can be simplified if the right-hand (α) are bounded to be of length
two; then no grammar tree ever has more than binary branching.

Definition 16.1 binary standard form. Let G = (V,Σ, S, P) be a context-free grammar,
the G is said to be binary standard form if each production rule is of the form,

A → BC | a

where A ∈ V ; B,C ∈ V − {S}.

Theorem 16.2 For each context-free grammar G = (V,Σ, S, P) without null productions,
useless productions, and unit productions, there is a grammar G′ = (V ′,Σ, S, P ′) such that
L(G) = L(G′), where G′ is in Chomsky Normal Form (CNF).

Proof: Let G be a CFG, which generates strings of context-free language L, and ε /∈ L.
Also, we assume that G does not have unit productions and useless productions. In case this
does not hold, one can always convert a grammar with ε-productions, useless productions,
and unit productions, into an equivalent grammar that does not have these. For proofs, see
the theorems discussed above.

Now consider the productions P . If a production has single symbol on the right hand
side, this will be a terminal symbol because unit productions do not exist in G. Hence this
production is already a CNF. Next consider a production in P of the form A → X1X2 . . . Xn,
where n ≥ 2 and Xi ∈ (V ∪Σ). If Xi is a terminal symbol, say a, then substitute Xi by Ci

and introduce a new production Ci → a. After making these changes for all the productions,
let the new set of variables be V ′ and new set of productions be P ′. Let us call this CFG
as G′ = (V ′,Σ, S, P ′). However, G′ is still not CNF as it has production of the form:

A → a

A → C1C2 . . . Cn

16-1

16-2 Lecture 16: March, 23 & 25, 2020

where A,Ci ∈ V ′, and a ∈ Σ. However, we have L(G) = L(G′), as due to above changes
the generating power of remains same as that of G.

In second step, additional variables are introduced, and productions of the form A →
C1C2 . . . Cn are reduced to A → BC.

The productions of the form A → C1C2 (already a CNF) are retained unmodified in G′

along with their variables. Next, for the productions of the form A → C1C2 . . . Cn, for
n > 2, new variables are introduced and productions are modified in G′ as follows.

A → C1D1

D1 → C2D2

...Dn−3 → Cn−2Dn−2

Dn−2 → Cn−1Cn

The above productions are as per the CNF, hence added into the P ′, and all corresponding
variables are added into V ′.

If above process is repeated for all the productions in P ′, these productions get transformed
into CNF in G′. This proves that

L(G′) = L(G).

Example 16.3 Convert the CFG G = (V,Σ, S, P), with productions given below, into
Chomsky normal form.

S → aA | bB

A → aaA | b

B → bbB | a

Σ = {a, b}

V = {S,A,B}

S is start symbol.

First considering productions of the form A → a, these are two only. Hence,

P ′ = {A → b, B → a}.

Next consider the productions of the form A → X1X2 . . .Xn, where Xi ∈ (Σ∪V) and n ≥ 2.
These are,

S → aA

S → bB

A → aaA

B → bbB

Lecture 16: March, 23 & 25, 2020 16-3

Convert these to the form A → C1C2 . . . Cn. Hence, the above are transformed as,

S → C1A, C1 → a

S → C2B, C2 → b

A → C3C4A, C3 → a, C4 → a

B → C5C6B, C5 → b, C6 → b

Add these productions to P ′.

Now, pickup the productions of the form A → C1C2 . . . Cn in and convert them to the form
A → C1D1, D1 → C2D2, etc. These productions in P ′ are:

A → C3C4A

B → C5C6B

Convert these productions into the form given below, and add them into P ′.

A → C3D1

D1 → C4A

B → C5D2

D2 → C6B

Add rest of productions also into P ′. The final P ′ and V ′ are,

P ′ = {A → b, B → a, S → C1A,C1 → a, S → C2B,

C2 → b, A → C3D1, D1 → C4A,C3 → a,

C4 → a,B → C5D2, D2 → C6B,C5 → b, C6 → b}.

V = {S,A,B,C1, C2, C3, C4, C5, C6, D1, D2}.

A CNF grammar, equal to the original given grammar is, therefore

G′ = (V ′,Σ, S, P).

16.2 Invertible Grammars

The motivation for studying this class of grammar comes from the theory of bottom-up
parsing. Crudely speaking, bottom-up parsing consists of successively finding the phrases
and reducing them to their parents. Invertible grammars allow reduction decision to be
made simpler.

16-4 Lecture 16: March, 23 & 25, 2020

Definition 16.4 Invertible Grammar. A context-free grammar G = (V,Σ, S, P) is said
to be invertible if no two production rules are the same of right hand side of the productions,
i.e., A → α and B → α in P implies A = B, for A,B ∈ V , and α ∈ (Σ ∪ V)∗.

Thus invertible grammars have unique right-hand sides of the productions and the reduction
phase of the parsing becomes a matter of table lookup. The reason for this name is that
P−1 is a function exactly when G is invertible.

16.3 Greibach Normal Forms

Several algorithms have been proposed utilizing some forms of pushdown store machines
for syntactic analysis of natural or artificial languages, which place some restriction on
context-free grammars. In order to work efficiently, these algorithms forbid infinite left-
going structures resulting from generations like A ⇒∗ Aε. It has been hypothesized that
natural languages do not permit infinite loops of this kind. One can avoid such structures in
designing the syntax of programming languages. It has been proved that every context-free
grammar is strongly equivalent to one that does not contain such structures. The Greibach
normal form (GNF) shows that every context-free grammar is strongly equivalent to one
that does not contain such structures.

In a given analysis of a given input string, the machine (PDA) scans the input strictly from
left to right. At each operation it,

1. scans a new input symbol,

2. scans and erases the top symbol on the push-down store,

3. adds a (possibly null) string of symbols to the push-down store,

4. prints an output.

Example 16.5 Give algorithms to decide the following: “Is L(G) finite, for a given CFG
G?

Convert G to Greibach normal form (without useless symbols), that is, all productions are
of the form A → aγ, where γ ∈ V ∗. Build a directed graph with vertices V (i.e., variables),
and add an edge A → B if B appears in γ. L(G) is finite if and only if the graph does not
contain cycles.

Theorem 16.6 For each context-free grammar G = (V,Σ, S, P) with production P defined
as,

A → Aα1 | Aα2 | · · · | Aαm

where αi 6= ε for all i, 1 ≤ i ≤ n, be all the rules with variables A on the left such that the
left-most symbol of the right hand side of the rule is A. The remaining rule is,

A → β1 | β2 | · · · | βn

Lecture 16: March, 23 & 25, 2020 16-5

,

then there exists a CFG G′ = (V,Σ, S, P ′) such that L(G) = L(G′), where

V ′ = V ∪ {B}

and, P ′ is given as,

A → β1B | · · · | BnB | β1 · · · | βn

B → α1B | · · · | αmB | α1 | · · · | αm.

In other words, for each grammar with left recursions in the productions, there exists an
equivalent grammar without left recursions.

Proof: The effect of this construction is to eliminate the left recursion in the variable A. In
each place we have a new right recursive variable B. We note that none of the new A-rules
are directly left recursive because none of the βi begin with A. In addition, with βi 6= ε one
cannot get the left recursion on A by going through B. Also, we note that B is not the left
recursive variable because αi 6= ε for all i and because none of the αi begin with B.

Let us consider a derivation using G:

A ⇒ Aαi1 ⇒ Aαi2αi1

⇒ · · · ⇒ Aαipαip−1
. . . αi1

⇒ βjαipαip−1
. . . αi1

The above derivation in G can be obtained using G′ as,

A ⇒ βjB ⇒ βjαipB ⇒ βjαip−1
B

⇒ · · · ⇒ βjαipαip−1
. . . αi2B

⇒ βjαipαip−1
. . . αi1 .

This proves that L(G) = L(G′).

A context-free phrase-structure generator is in standard form if and only if all of its rules
are of the form Z → aY1Y2 . . . Ym, where Z, Yi ∈ V and a ∈ Σ. This format will help
in processing one input symbols at each step. A standard form is always convenient for
computer manipulation of context-free languages. This standard from is called Greibach
normal form. The proof of this theorem (refer bibliography for details) states that every
context-free phrase-structure generator is strongly equivalent to one in GNF.

In recursive descent parsers, presence of left recursion causes the device to go into an infinite
loop. Thus elimination of left recursion is of practical importance in such parsers.

16-6 Lecture 16: March, 23 & 25, 2020

A CFG G = (V,Σ, S, P) is in Greibach normal form if and only if all of the rules of P are
of the forms:

A → a

A → aB1B2 . . . Bn, for n ≥ 1, a ∈ Σ, and Bi ∈ V.

Example 16.7 Convert the following CFG into GNF:

S → BC

B → bB | aC | a

C → a

The above CFG is not GNF, but applying the theorem (substitution 1) these productions
can be transformed into an equivalence grammar, which is GNF.

S → bBC | aCC | aC

B → bB | aC | a

C → a

which is GNF.

