
4CS4-6: Theory of Computation (Turing machine model for computation)

Lecture 18: April, 01, 2020

Prof. K.R. Chowdhary : Professor of CS

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal

publications. They may be distributed outside this class only with the permission of the

Instructor.

18.1 Introduction

In 1936 Alan M. Turing defined a class of logical machines which he used as an aid in proving
certain results in mathematical logic, and which should prove of interest in connection with
the theory of control and switching system. He had shown that given any logical arithmetic
computation for which complete instructions for carrying are supplied, it is possible to
design a TM (Turing Machine), which can perform this operation. Turing suggested that
such a machine is an abstract mathematical model of a human being assumed to perform a
computation, with the states of mind of the human, and the symbols on tape corresponding
to the numerical answers and to the intermediate results on the scratch paper.

Developments since the time of Turing’s paper have been in the direction of digital computer
which shows a much more direct resemblance to Turing machines than to human beings.
In fact, several earlier computers comprised magnetic tape or perforated paper tapes as
auxiliary memories. The one tape machines are called Turing machines.

In the previous chapters, we have discussed the languages’ recognition machines like–finite
automata (FA) and pushdown automata (PDA). The first recognizes the language of regular
expression and second–the context free languages. The pushdown automata are more pow-
erful as they can recognize some languages not recognizable by the finite automata. This
is due to the fact pushdown automata has unlimited read/write memory called pushdown
stack where reading and writing takes place at one end of this memory. For example, a
PDA can recognize the languages like {anbn | n ≥ 0}, which cannot be recognized by the
FA. However, there still exists the languages like {anbncn | n ≥ 0} and {ww}, which cannot
be recognized by the PDA. In this chapter, we will study the machines, which can recognize
these and even more complex languages. These machines are called Turning Machines (TM)
after their inventor (Alan M. Turing). These machines are similar to the machines discussed
earlier, but are more general than those. A TM consist of finite control like FA and PDA, a
tape for reading and writing on it, and a head which can read from this tape and can write
on it, and while doing this the head can move right and left on the tape.

The Turing machines are very simple in structures. In spite of this, they need not to be
augmented for doing complex tasks. The access in the Turing machine is always sequential.
Still, machines, which appear more attractive, like those with random access capability, in
fact do not increase the computing power. These, visibly more powerful machines can be
simulated by the Turing machine, and have no extra computation power than standard TM.
Other alternative and powerful TMs seem to form a stable and maximal class of computing

18-1



18-2 Lecture 18: April, 01, 2020

devices in terms of computations they perform. It may be noted that, computing power
here means not the speed of computation, but the power of problem solvability through the
machine, given the sufficient time to solve it.

A Turing machine satisfies following three general criteria:

1. These are automata, i.e., their function and construction are in the similar lines of the
automata discussed earlier,

2. These should be as simple as possible, to define formally, describe and reason about
them, and

3. These should be as general as possible so that any computation can be represented
using them.

By analogy of TMs with modern computers is as follows: the tape of TM is equal to the
memory of computers, and the read-write head is equal to CPU.

18.2 Turing Machine Model for Computation

A Turing-machine computing model (Fig. 18.1) consists of a finite-state control, a tape and
read-write head. The read-write (RW) head reads the input symbols from the tape, as well
as writes or modifies the symbols on the tape.

aba c B⊲ ...BBBBBBB

Finite
Control

Read / Write head
Direction of

head movement

Infinite tape

Figure 18.1: Turing Machine Model

The finite control operates in discrete steps, where, in each step it performs following op-
erations that are decided by the current state of the finite-control and the tape symbol
currently read by the read/write head:

1. Write a symbol on a square on tape from which it has just read a symbol, thus replacing
the previous symbol,

2. Change of state of the control to a new state, and

3. Move the RW head to left or write. The direction of move will be decided by the
current state and the symbol the RW head has just read.

The tape of the TM ends at its left but extends to right without any limit. Thus, to prevent
the read-write head from moving beyond this left end, an end-marker symbol (⊲) indicates



Lecture 18: April, 01, 2020 18-3

the left end of the tape. The end marker is not counted as symbol in alphabets of input.
We will use R (right) and L (left) characters as short forms to indicate the direction of the
head movement. Input to the TM is supplied by writing the string on the tape in advance,
starting immediately after the symbol ⊲ and extending towards right up to any length.
Note that, at many places in our text, we will be using B (for blank) symbol in place of ⊲.

The rest of the tape squares after string end are blank, indicated by B symbols. The TM is
free to alter its input string in any way it sees fit, and can write symbols beyond it. Since
the machine’s head makes only one square move after reading each square, therefore, for
any finite computation only finite number of squares will be scanned on the tape.

Mathematical Model of TM A Turing machine is a 6-tuple defined as

M = (Q,Σ,Γ, δ, s,H) (18.1)

where,

Q is finite set of states

Σ is set of input symbols

Γ is set of tape symbols, and Γ = Σ ∪ {B,⊲}, here B is for blank space, and ⊲ is left
end marker symbol on tape When B is used as left most end marker, the tape symbols
are Γ = Σ ∪ {B}

B ∈ Γ is a symbol for blank

s ∈ Q is start state

H ∈ Q is set of halting states, called accepting states, and,

δ is transition function.

The transition function is a mapping,

δ : (Q −H)× Γ → Q× Γ× {L,R} (18.2)

where L,R indicates that head takes left or right move. Thus, a transition in TM can be
represented by

δ(p, a) = (q, b, d) (18.3)

where p ∈ Q−H , q ∈ Q, terminals a, b ∈ Γ, and the displacement d ∈ {L,R}. A transition
indicates that a TM in state p (not a halting state), and symbol on the tape square being
read is a then TM replaces a by b on that square, changes the state to q, and moves the
head one square to left or to right depending on the value of d. If q ∈ H then the TM has
halted. Once the TM is halted then it does not cause further transitions any more, hence
is not defined for δ(p, a), where p ∈ H , and a is any symbol in Γ.

If the head moves to extreme left end of the tape then δ is defined as,

δ(p,⊲) = (q,⊲, R) (18.4)



18-4 Lecture 18: April, 01, 2020

This shows that the leftmost symbol ⊲ on tape is never erased. Also, the machine does
not write ⊲ on the tape except at the extreme left end of the tape. Unlike in Pushdown
Automaton, transition function δ(q, a) for a TM is always a single value (not a set). There-
fore, TM is always deterministic and δ(q, a) is not defined for halting state (H). However,
non-deterministic TMs are possible as variations of basic TMs, but these are in no way more
powerful than the standard Turing machines.

18.3 Configurations and Moves of TM

A Configuration of a TM is denoted by α1qα2, where α2 ∈ Σ∗ is a string which extends
from RW head up to right most non-blank symbol, and α1 ∈ Σ∗ is a string which extends
from head position to left up to end marker. It is assumed that the head is pointing to the
left most symbol of α2. If α2 = ε then the head is pointing to blank (B).

A move of a TM can be defined as follows. Let us assume that,

X1X2 . . . Xi−1qXiXi+1 . . . Xn

be an ID (Instantaneous Description) shown in Fig. 18.2, where Xi is the symbol pointed
by RW head currently. Consider that there is a transition

δ(q,Xi) = (p, Y, d).

It shows that TM at state q and head pointing to symbol Xi, write Y at that place, changes
state to p and the RW head takes a displacement d (which may be left, right or may remain
stationary).

If i− 1 = n then Xi = B. If i = 1 then Xi =⊲ and the head will move to right, else it will
fall off the tape or we say it crashes. If i > 1 and i = n then for d = L, we write a move as,

X1X2 . . . Xi−1qXiXi+1 . . . Xn ⊢M X1X2 . . . Xi−2pXi−1Y Xi+1 . . . Xn.

...X2X1 Xi−1 Xi+1⊲ Xn
...Xi

Finite
Control

Read / Write head

Infinite tape

Figure 18.2: TM representing ID = X1X2 . . . Xi−1qXiXi+1 . . . Xn

Alternatively, for i > 1 and d = R, a move is written as,

X1X2 . . .Xi−1qXiXi+1 . . .Xn ⊢M X1X2 . . .Xi−1Y pXi+1 . . . Xn.



Lecture 18: April, 01, 2020 18-5

For i− 1 = n, the entire string is to the left of q, and Xi...Xn part is empty. If two IDs are
related by ⊢M then we say that second ID results from the first by a single move. If two
IDs are related by ⊢∗

M
then we say that second ID results from the first ID by zero or more

number of moves, but certainly by finite number of moves.

Consider that language L = L(M) accepted by the TM M is such that at start, head points
to the left most square of the tape (i.e., just after ⊲), the start state is q0, and ultimately
the M enters into the final state. Thus, language L is formally represented as:

L = {w | w ∈ Γ∗, q0w ⊢∗

M
αpβ for some p ∈ H, and α, β ∈ Γ∗}. (18.5)

The following example explains accepting of input strings by a Turing machines.

Definition 18.1 Acceptance by Turing machine. A TM M accepts a string w if there

exists a sequence of configurations C1, C2, . . . , Cn such that,

1. C1 is starting configuration of M on input w, expressed as q0w,

2. Cn is accepting configuration, expressed as uqhv, and u, v ∈ Γ∗, qh is halting or

accepting state, and

3. for each 1 ≤ i ≤ n, Ci yields Ci+1.

L(M), the language of M , i.e., strings recognized by M , is the set of strings accepted by M .

Example 18.2 Turing machine as an algorithm to erase the memory content.

Consider a TM, M = (Q,Σ,Γ, δ, s,H), where Q = {q0, q1}, Σ = {a}, Γ = {a,B,⊲}, s = q0,
H = {q1} and transition function δ is given as:

δ(q0, a) = (q0, B,R)

δ(q0, B) = (q1, B, L).

For an input string w = aaaa, the corresponding IDs and moves are as follows:

q0aaaaB ⊢ Bq0aaaB ⊢ BBq0aaB ⊢ BBBq0aB

⊢ BBBBq0B ⊢ BBBq1B

q0 q1

a|(B,R)

B|(B,L)

Figure 18.3: Transition diagram for TM erasing its tape contents



18-6 Lecture 18: April, 01, 2020

Therefore, the above TM simply erases all the characters of input string and then halts.
Fig. 18.3 shows the transition graph for this Turing machine.

Conceptually, a TM can be used as language recognizer, and as computing machine, to
compute some thing or in general as a function computer.


