
4CS4-6: Theory of Computation (Multi-tape Turing Machines)

Lecture 20: April, 06, 2020

Prof. K.R. Chowdhary : Professor of CS

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal
publications. They may be distributed outside this class only with the permission of the
Instructor.

20.1 Turing machines to recognize Palindrome Languages

Example 20.1 Construct a TM for the language {wwR | w ∈ {0, 1}∗}.

The Fig. 20.1 shows the transition diagram for above Turing machine. Note that the lan-
guage consists even palindromes. The transition table can be easily constructed using this
diagram.

q0

q1 q2

q3

q4q5

0|
X
,R

0|0, R

1|1, R

X |X,L

B|B,L

0|X
,L

1|X
,L0|0, R

1|1, R
1|X

,R

B|B,L

X |X,L

X |X,R

1|1, L

0|0, L

Figure 20.1: TM for L = {wwR | w ∈ {0, 1}∗}

The Fig. 20.2 is TM for odd Palindrome language, i.e., {w | w = u(0 + 1)uR, and u ∈
{0, 1}∗}.

20.2 Variants of TM

Variations of Turing Machine exist that are proposed to enhance the power of the Turing
Machine. It has been proved that, the problems solved by these new models can also be
solved by basic model discussed so far. The solution processes used by these new models
are mechanical procedures and any mechanical procedure can be implemented on a basic
Turing machine. This gives further strength to the basic TM that it is an ultimate TM.

20-1

20-2 Lecture 20: April, 06, 2020

q0

q1 q2

q3

q4q5

q6

0|
X
,R

0|0, R

1|1, R

X |X,L

B|B,L

0|X
,L

1|X
,L

0|0, R

1|1, R
1|X

,R

B|B,L

X |X,L

X |X,L

X |X,L

X |X,R

1|1, L
0|0, L

Figure 20.2: TM for L = {w | w = wR ∈ {0, 1}∗}, and w is an odd Palindrome

Hence, TMs with multiple tapes or multiple dimensions, or random access have problem
solving capability no better than basic TM. In fact, a TM with non-determinism is in no
way better than the basic TM, though it guesses and therefore does not work purely on
mechanical procedure. This fact was not verified even by Alan Turing himself.

One problem, which was not immediately solved by Turing’s thesis was –different problem
solvability by TM at different times. This corresponds to rewritability of programs in modern
computers and the corresponding machine is called universal Turing machine.

Many variations have been proposed for TM extensions, the major extensions are as follows:

1. Multiple tape Turing machine

2. Multiple track Turing machine

3. Two dimensional Turing machine

4. Multidimensional Turing machine

5. Two-way infinite tape

6. Nondeterminic Turing machine

7. Universal Turing Machine

Theorem 20.2 The operations of a TM allowing some or all the above extensions can be
simulated by a standard TM. The extensions do not give us machines more powerful than
the TM.

In the course of time, as we progress, we will be supported by evidence that this theorem
is true. At some point of time, we may prove this theorem also. The power here means its
problem solving capability, and not the relative speed at which it computes. However, the
extensions are helpful in designing machines to solve particular problems.

Lecture 20: April, 06, 2020 20-3

20.3 Multi-tape Turing Machines

A Multi-tape Turing Machine (Fig. 20.3) consists of k-tapes (for example, k = 3), and k

number of read-write heads, and each tape extending in infinite in one direction. On a
single move, depending on the state of the finite control and symbol read from each tape,
the machine can perform following operations:

1. Change the state to a new state,

2. Write a new symbol at the current head position on each tape, and,

3. Each head can move right or left or remain stationary on each tape independently.

However, many a time one tape is considered for the original input string, and only read
operation takes place with that, while manipulation of symbols go on other tapes where
read/write operations take place. For example, in a two tape Turing machine, each tape
has its own read-write head, but the state is common for all tapes and all heads. In each
step (transitions) TM reads symbols scanned by all heads, depending on head position and
current state, next, Each head writes, moves R (right) or L (left), and control-unit enter
into new state. Actions of R-W heads are independent of each other.

Let the the tape position in two tapes is [a, b]. The transition function δ is given by:

δ(qi, [a, b]) = (qj , [a
′, b′], d, d),

where d ∈ {L,R}. Various moves of this two-tape Turing Machines can be given as follows:

δ a, a B, a a,B B,B

q0 q1, a, b, L,R q2, b, B, L, L q0, b, B, L,R, . . .

A standard TM is multi-tape TM with single tape. The multi-tape TMs are better suited
for specific applications, e.g., copying string from one tape to another tape. However, their
time-complexity remains P (Polynomial) only. Fig. 20.3 shows a 3-tape Turing machine,
presently in state qi, and three different heads pointing to three tapes.

Tape 1

Tape 2

Tape k

qi

...

...

Figure 20.3: Multi-tape Turing machine

A transition in a multi-tape Turing machine, for number of tapes k ≥ 1 is:

20-4 Lecture 20: April, 06, 2020

δ : (Q−H)× Γk → Q× Γk × {L,R}k,

and a specific transition is given by,

δ(qi, a1, . . . , ak) = (qj , (b1, . . . , bk), (d1, . . . , dk)).

Here, a1, . . . , ak are are original symbols on tapes T1, . . . , Tk, and b1, . . . , bk are new symbols
written on these tapes, and head of these tapes takes movements (displacements) d1, ..., dk,
respectively, where di ∈ {L,R}. The steps to carry out a transition are:

1. change to next state;

2. write one symbols on each tape;

3. independently reposition each tape heads.

20.3.1 Two-tape Turing Machine

A two-tape Turing machine has two read/write tapes, and corresponding two read/write
heads, and one state. After each transition, the read/write heads will write each a symbol
on their current position, then moves to right both or left both, or one left and other right,
and the machine changes from qi to qj .

δ(qi, [a, b]) = (qj , [a
′, b′], d, d),

and d ∈ {L,R}.

Example 20.3 Construct a Two-tape TM to recognize language L = {anbn | n ≥ 0}

[B|B,R;B|B,R]

[a|a,R;B|a,R]

[b|b, S;B|B,L]

Copy

Align
[b|b, R; a|a, L]

[B|B,L;B|B,R]
q3q2q1q0

Compare

Accept

Figure 20.4: Recognition of language L = {anbn | n ≥ 0} using a two-tape TM

With the original string w on tape 1, the transitions (instructions) performed by the TM
are shown in Fig. 20.4, and major steps are as follows:

1. Copy: Copies the string of a’s on tape-1 to tape-2.

2. Align: Moves head 1 to begin of b’s on tape-1, and head-2 on last a on tape-2.

3. Compare: Compares number of b’s tape-1 with number of a’s on tape-2 by moving
heads in opposite directions.

Lecture 20: April, 06, 2020 20-5

The time complexity of this TM is computed as follows: There are total 1+n+1+n+1 =
2n+ 3 transitions for a length of string |w| = 2n. Thus, for input w of length n, number of
transitions are n+ 3, as the constant factor 3 remains unchanged. So, the time-complexity
is O(n + 3) = O(n), which is Polynomial in time, i.e., P.

Compare the above computed complexity with that of example on page no. ?? of O(n2)
for standard TM, for the same problem. We note that in two-tape TM it is linear, i.e.,
its complexity increases proportional to size of input, while in standard TM it increases
quadratically with the size of the input, however in both the cases it is in P.

Example 20.4 Two-tape TM to recognize language L = {wwR | w ∈ {a, b}∗}.

[B|B,R;B|B,R]

[a|a,R;B|a,R]

[b|b, R;B|b, R]

[B|B,L;B|B,L]

Copy

Align

[a|a, L;X |X,S]

[b|b, L;X |X,S]

[B|B,R;X |X,S] [B|B,L;B|B,R]
q4q3q2q1q0

Rewind
[a|a,R; a|a, L]
[b|b, R; b|b, L]

Compare

Align Accept

Figure 20.5: Two tape Turing machine to recognize L = {wwR | w ∈ {a, b}∗}

While the original string w is on tape 1, perform the following steps:

1. Copy string w on tape 2,

2. Move head 1 to extreme left (rewind),

3. Aligns both heads on opposite, i.e, head 1 to extreme left, head 2 to extreme right,

4. Compare tape 1 and 2, by moving heads in opposite directions.

The transition diagram in Fig. 20.5 also shows these sequence of steps.

Time Complexity of this TM is total number of transitions in copy, rewind, compare, and
align operations. For |w| = n, following are the count of transitions:

Align: 1 transition

Copy: n transitions

Align: 1 transition

Rewind: n transitions

Align: 1 transition

Compare: n transitions

Align: 1 transition.

Hence, the total transitions are 3n+ 4, and time complexity is O(n). This is a Polynomial
complexity (i.e., P).

20-6 Lecture 20: April, 06, 2020

20.3.2 Three-tape Turing Machine

In three tape TM, one of the tape holds the input, the other one is used as working tape
(scratch pad), and the remaining is for simulations. In the next example, we make use of
three tape TM to recognize the input w whether it belong to the language of perfect squares
{ε, a1, a4, a9, a16, . . . }.

Example 20.5 Construct a 3-tape TM to recognize the set {an | n is a perfect square}.

T1

T2

T3

qi

a a a

a

a

a

B

B

B

Figure 20.6: Three tape TM to recognize the language ak
2

1. Tape-1 (T1) holds the input, tape-2 (T2) holds progressive ak
2

(for k = 1, 2, 3...) and
tape-3 (T3) the progressive ak, for k = 1, 2, 3, ... (see Fig. 20.6).

2. Initialize T2 = T3 = ε.

3. Input T1 is compared with T2, by scanning both tapes.

4. If T2 = T1, accept and terminate, else if |T2| > |T1|, reject input and terminate (else
|T2| < |T1|).

5. Append T2 with 2× T3. This changes T2 from current value ak
2

to ak
2+2k.

6. Append the symbol a to T2 as well to T3. This changes T2 to ak
2+2k+1 = a(k+1)2 .

7. Go back to step-3

8. end

Example 20.6 Simulation of a three-tape TM M by standard TM S (i.e., TM with single
tape).

Let the contents of a three tape TM M are as follows:

1. Tape 1 holds: 01010B

2. Tape 2 holds: aaaB.

3. Tape 3 holds: baB.

Lecture 20: April, 06, 2020 20-7

The bold symbols in all the above three tapes indicate the position of R/W head.

Let a standard Turing machine S simulates the three tape Turing machine M . The contents
of standard Turing machine, having single tape are as follows:

01010#aaa#baB

Here, # is separator for contents of three tapes when kept on single tape. In practice, the
standard tape of TM S leaves an extra blank before each symbol to record position of virtual
read-write head. The R/W heads of S reads the symbols under the virtual heads (L to R).
Next, S head makes a second pass to update the tapes according to the way the transition
function of M dictates. If, at any point of time, Turing Machine S moves one of the virtual
heads to the right of symbol #, it implies that head has moved to unread blank portion of
that tape. So S writes a blank symbol in the right most of that tape, then continues to
simulate. Using this approach, we will definitely able to simulate the Turing machine M on
Turing Machine S of single tape, but it is clear that control will require a lot more states,
in standard tape when it simulates a 3-tape TM.

