
4CS4-6: Theory of Computation (Undecidability)

Lecture 24: April, 21, 2020

Prof. K.R. Chowdhary : Professor of CS

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal

publications. They may be distributed outside this class only with the permission of the

Instructor.

24.1 Unsolvable problem of elementary number theory

There is a class of problems in elementary number theory which can be stated as: it is
required to find an effectively calculable function f(x1, x2, ..., xn) = 2, where arguments are
positive variables, is necessary and sufficient condition for the truth of certain proposition
of elementary number theory having x1, x2, ..., xn as free variable.

An example of such as problem is to find a means of determining of any given positive integer
n, whether or not there exists positive integers x, y, z, such that xn+yn = zn. This problem
may be interpreted as, it is required to find an effectively calculable function f , such that
f(n) is equal to 2 if an only if there exists positive integers x, y, z, such that xn + yn = zn.
Clearly, the condition that the function f be effectively calculable is an essential part of the
problem, since without it the problem becomes trivial.

24.2 Unsolvability

There are infinitely more problems than algorithms, and there are in fact infinitely more
problems than machines. So building a machine that is more powerful than computer, would
not help a bit. There would still be an infinite number of problems it would not be able to
solve. In the next we list the steps to define such a problem.

Defining the problem The next problem is to show a one-to-one function from the set of
problems on to the set of real numbers [0, 1]. We do this by concatenating the output digits
of all possible inputs (one to infinity) of the problem of primality test mentioned above. The
problem can be stated as,

Input: Natural Number
Output: 1 if input is prime and 0 otherwise.

For input 1, output is 0, for input 2 the output is 1, for input 3, output is 1, and so on. The
real that corresponds to this problem is 0.0110101000101..., which is infinite in length. We
have given it only for the first 13 integers. We may consider that for infinitely large number

24-1



24-2 Lecture 24: April, 21, 2020

of problems, every problem will have some kind of representation. Like this, every problem
has a unique representation.

The next step is to show how we compare cardinality of infinite sets. Obviously, the problem,
represented by a sequence like this real number, are uncountably infinite. Whereas, the
number of algorithms (step 3 above), are countably infinite. Using Cantor’s diagonalization

method (chapter 1), we conclude that there are more real numbers between 0 and 1, than
(the number of algorithms).

After the described steps, we conclude that there are infinite numbers of problems that
cannot be solved by a computer.

24.3 Unsolvability of Diagonal Language

In the following discussions, our objective will be those problems which cannot be solved by
computer. In other words, we will be able to show that no Turing Machine exists to solve
such problems.

Consider that M is a TM with alphabet Σ = {a, b} and w ∈ Σ∗, and M accepts w. We had
discussed that a TM M can be encoded as en(M), and its input w as en(w), accordingly,
for the alphabet Σ, the encoding is:

δ(qi, a) = (qj , b, L)

= 001i+101201j+101301200

(24.1)

Similarly, all the transitions can be encoded. Hence 〈M,w〉 is encoded as 00mi 00mj00 . . .
00mk, where mi is a transition, like shown in equation 24.1. We note that all the transitions
of a TM, separated by 00 is a big integer number. If this process is followed, we can encode
all the possible TMs. If a string is not a well-formed representation of any TM, we take
this as encoding of a TM with null moves, hence every binary string, whether long or short,
can be taken as representation of some TM. Therefore, all Turing machines are represented
by integers {1, 2, 3, . . . , i, . . . }, which is enumeration of Turing machines Mi, and are the
countable infinite numbers.

Consider that language for a TM Mi is L(Mi). For example, in typical case the language
is Mi = {1, 10, 110, 111, 1001, . . . , }. This is subset of lexicographic order binary set: Mu =

{1, 10, 11, 100, 101, 110, 111, 1000, 1001, }̇. In a encoded representation of language Mi, we
indicate the presence of string w in Mu as 1 and absence of that as 0. Hence, the encoded
representation of above Mi is {1, 1, 0, 0, 0, 1, 1, 0, 1, . . .}. Hence, if we construct a matrix of
Mi×wj , then (i, j) = 1 if wj is accepted by Mi, else 0. So, ith row is a characteristic vector
for language L(Mi) (Fig. 24.1).

We think of the diagonal vector for the above figure, which is [1, 1, 1, 0, 1...], and take this

as a characteristic vector, the corresponding language is {1, 10, 11, 101, }̇, which is obvious
by the definition of language we defined in the beginning of this discussion. As next step
take the complement of this diagonal vector, which is {0, 0, 0, 1, 0, . . .}.



Lecture 24: April, 21, 2020 24-3

〈wj〉

1

2

3 4

5

1

2

3

4

5

1

0 0

000

00

000 1

0 1

1

1

1

0

1 1

〈Mi〉

01 1 1 1

Figure 24.1: Diagonalization

We note, that the the complement disagrees with every row vector, because the first element
of the complement disagrees with the first element of first row, and similarly it disagrees
with all the rows we have listed. Hence, it represents a language which is not accepted by
any TM. The complement of the diagonal vector cannot be characteristic vector of any TM,
because the TMs are enumerated. Let the language of this complemented characteristic
vector be Ld. This language is undecidable, as there does not exists any TM which can
recognize it.

Let us assume that Ld is some language. Therefore, it should appear as some string wj .
But, we note that Ld /∈ {wk}, where wk is some language. This is a contradiction. So, there
does not exist any TM which recognizes the Ld, hence Ld is undecidable.

The Church-Turing Thesis (CTT) also has consequence for undecidability. If a problem
cannot be solved by any TM, then it cannot be solved by any algorithm. A decision language
having no algorithmic solution, is called undecidable.

There are countable TMs (i.e., Algorithms), but the number of problems are uncountable.
It follows that there are languages whose membership problems are undecidable.

24.4 Undecidability of Halting Problem

In general there exists no Turing machine that eventually halts and decides YES/NO for a
given problem, then the problem is called as undecidable. The problem called the halting

problem, seeks the answer to the question, whether any Turing machine will eventually halt
or run forever. We will show in the remaining discussion in this section that halting problem
is undecidable.

At the first instance the halting problem seems decidable. A Turing machine M with
input w yielding YES, when w is accepted, and NO, otherwise. This machine with input
w is simulated on the Universal Turing machine Mu, so Mu should yield YES and halt
when simulated M accepts w. But, when M with input w reject, then the Universal Turing
machine Mu runs forever, and hence cannot output NO ever. So we cannot solve the halting
problem with the universal Turing machine running M .



24-4 Lecture 24: April, 21, 2020

Theorem 24.1 Show that Halting problem is undecidable.

Proof: Let us assume that there is a TM M that accepts input w with w ∈ L(M), and
rejects w /∈ L(M). To model the halting problem, let us assume that there is a TM H
that decides this. That is, when H is simulated to run M with input w, so that when M
prints “accept”, H will also print “accept”, and when M print “reject”, the H will also print
“reject”. For this we feed representation R(M) and w as input to H (see Fig. 24.2(a)).

Figure 24.2: Halting Problem

Next, we do minor modification in H , as shown in Fig. 24.2(b), where accept is replaced by
halts, and reject is replaced by loop. The modified H is shown as H ′. The first is simple, as
only the message content has changed. For the reject case, when M rejects w, the H ′ calls
a loop.

In the Fig. 24.2(c), we only input the representation R(M), and by a “copy” TM, another
similar string is obtained, so in place of w we have input to H ′ as R(M). In addition, the
outputs: loop and halt are exchanged. Let this modified machine is D (for Diagonalization),
as we did complement of the diagonal language Ld (see page no. ??). And therefore, the
complement is not arbitrary.

Since R(M) was input to TM M simulated by H ′ earlier, we can also feed R(D) as input
to D machine, just like R(M). With this final modification, we have shown the machine in
Fig. 24.2(d).

Now we analyze the output of D, and appropriately restate as follows:

1. If D halts with input R(D) then D loops,

2. If D does not halt with input R(D) then D halts.

In other words, we note that “D loop if D halts with input R(D)”, and “D halts with
input R(D) if, D does not halt with input R(D)”. This is a self contradicting statement.



Lecture 24: April, 21, 2020 24-5

Therefore, the halting problem is “undecidable”, i.e., when a machines receives its own
program (encoding) as input, we cannot decide whether it will halt or not.


