
4CS4-6: Theory of Computation (Regular Expressions)

Lecture 03: Jan. 13-14, 2020

Prof. K.R. Chowdhary : Professor of CS

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal
publications. They may be distributed outside this class only with the permission of the
Instructor.

3.1 Introduction

A regular expression (regex), often called a pattern, is an expression that describes a set of
strings. They are used to give a concise description of a set, without having to list its all
elements. For example, a set containing three strings “Raj”, “Rajan”, and “Rajam” can be
described by the pattern “Raj(ε|an|am)”. The vertical bar separates alternatives, and the
parentheses are used to define the scope and precedence of operators. In most formalism,
if there is any regex that matches a particular set, then there are an infinite number of
such expressions. The quantifier ∗ (asterisk) as power to an expression indicates that the
expression repeats indefinite number of times. For example, “ab∗cd” matches all the strings
acd, abcd, abbcd, abbbcd, etc. A ‘+’sign is used in place of separator ‘|’. Thus, the regex
ab + cd + efg matches all the strings ab, cd, efg. A sign of concatenation, ‘◦’is used to
join the strings. Thus, the regex ab ◦ cde matches with the string abcde. For the sake of
convenience, in this text, a reference to strings ab, cd, efg will mean “ab”, “cd”, “efg”,
respectively. Various constructs, like +, −, ∗ and / can be combined to form arbitrarily
complex expressions very much like one constructs arithmetic expressions from numbers and
operators +, −, ∗ and /.

In the design of sequential circuits, first step is obtaining an unambiguous description of a
circuit’s behavior. For a certain class of problems, language of regular expressions greatly
simplifies this first step synthesis. In general, richer the language, the easier it will be to
write the problem specifications.

Regular expressions have number of applications in computer science; for example, they
can be used for designing sequential circuits, and in the lexical analysis of programs. The
other applications are pattern recognition and pattern matching, text editing and in bibli-
ographic search systems. Common to all these approaches is that regular expressions must
be converted into a finite automaton. Ken Thompson built the notations of regular expres-
sions into the editor QED as a means to match patterns in text files [thompson]. Later he
added this capability into the Unix editor ed. The regex were later used in design of other
Unix tools, like - grep (global regular expression print), expr (expression evaluation), awk,
vi (visual editor), lex (lexical analyzer) and in the scripting languages Perl and Tcl.

3-1

3-2 Lecture 03: Jan. 13-14, 2020

3.2 More on Regular Expressions

To begin our study of finite representations, we consider expressions in the form of symbols
that describe how language can be built up using the operations. Suppose that we have the
language,

L ={w ∈ {0, 1}∗ | w has two or three occurrences of 1,

first and second of which are not consecutive}.

This language can be described using only singleton sets and the symbols: ∪, ◦, and φ as
below.

{0}∗ ◦ {1} ◦ {0}∗{0} ◦ {1} ◦ {0}∗ ◦ (({1} ◦ {0}∗) ∪ φ)

It can be easily verified that the language represented by the above expression is precisely
the L, and can also be represented in a simplified and compact form 0∗10∗010∗(10∗ + φ),
called regular expression. A regular expression describes a language exclusively by means of
language alphabets and φ and possibly combined with symbols, ◦, ∪ and ∗.

Let us first decide some notations for regular expressions. The Regular expressions over the
alphabet are defined inductively.

Definition 3.1 Regular Expression: A regular expression is defined recursively as follows:

1. φ, ε, and each a ∈ Σ is a regular expression,

2. If α and β are regular expressions then so are α ◦ β, α ∪ β, α∗, β∗,

3. Nothing other than (1) and (2) above is a regular expression.

Every regular expression represents a language according to the interpretation of symbol ∪
and ∗, which are set union and Kleene star respectively, and juxtaposition of expressions
using concatenation operator ◦. Formally, a relation exists between the regular expression
and the language it represents. This relation is expressed by the function L, such that if α
is any regular expression then L(α) is the language represented by it. In other words L is
a function from regex strings to the language.

Definition 3.2 Language over a Regular expression: Given a regular expression, the lan-
guage over this can be inductively defined as follows:

1. L(φ) = φ, L(ε) = {ε}, L(a) = {a}, for a ∈ Σ

2. If α and β are regular expressions, then

(a) αβ is regular expression, and corresponding regular language is L(αβ) = L(α)L(β),

(b) α ∪ β is regular expression and corresponding regular language is L(α) ∪ L(β),

Lecture 03: Jan. 13-14, 2020 3-3

(c) α∗ is regular expression, and corresponding regular language is L(α∗) = (L(α))∗.

The statement (1) above defines the language L as φ, {ε}, and {a} for the regular expression
φ, ε, a, respectively. The expressions (2) define the language for the regular expression
obtained by combining the regular expressions. The combination is done using operators
of +, ◦, and ∗. Therefore, every regular expression is mapped to some language, and the
mapping is bijective. This language is called regular language. The regular expression α∪ β
is also represented as α+ β.

Example 3.3 What are the strings in the language represented by the regular expression
((a ∪ b)∗a)?

Solution: The language or the set of strings for this regular expression can be obtained using
definition (3.2), as follows:

L((a ∪ b)∗a) = L((a ∪ b)∗)L(a)

= (L(a ∪ b))∗){a}

= (L(a) ∪ L(b))∗{a}

= ({a} ∪ {b})∗{a}

= {(a+ b)}∗{a}

= {a, aa, ba, aaa, aba, baa, bba, . . .}

Any language that can be represented by a regular expression can also be represented by
infinitely many regular expressions. For example, the regular expressions α ∪ (β ∪ γ) and
α ∪ (β ∪ γ) represent the same language. Normally we omit extra parentheses ‘(’and ‘)’in
regular expressions, and treat (a ∪ b) ∪ c as a regular expression a+ b+ c.

The regular expressions and the languages they represent can be defined formally and un-
ambiguously.

3.3 Recognizers and Generators

Let us come back to the general scheme for representation of the language L over Σ as,

L = {w ∈ Σ∗ | w has property P}.

What properties of P should we consider to define the language L? For example, what
makes the properties like - “w consists of number of 0s followed by equal number of 1s”,
as obvious candidates for regular expression. We emphasize only one property P such that
for the strings possessing property P to be admissible as specification for a language, there
must be an algorithm for deciding whether it belongs to the language. The algorithm, which
is in a position to decide precisely that “the string w is member of L”, is called language
recognition device. Consider that it is required to recognize the following language L, where,

L = {w ∈ {0, 1}∗ | w have 11 as sub-strings}.

3-4 Lecture 03: Jan. 13-14, 2020

A regular expression for this is (0 + 1)∗11(0 + 1)∗).

These regular expressions are useful important and useful means of representing languages
all the times. Both the language recognizers and language generators are finite specification
of languages.

Finally, though the regular expressions are parenthesized expressions, for the convenience
and ease of readability, the parenthesis are removed and the meaning remains unchanged.
For example, the regular expression ((((1)∗1)0∪ (1(1)∗)) can be represented by parenthesis-
free regular expression 1∗10 + 11∗. Even after obtaining regular expressions in this form
they can be further simplified using the following rules.

1∗(1 + ε) = 1∗, where is null string,

1∗1∗ = 1∗

0∗ + 1∗ = 1∗ + 0∗

(0∗1∗)∗ = (0 + 1)∗

In the following section, some examples explain how you can create regular expressions,
once the language specifications are given.

Example 3.4 Determine regular expression for the language of strings of 0s and 1s such
that all strings are of even length.

Solution: The possible even length strings are 00, 01, 10, 11. Thus, regular expression from
either of these strings is - the strings repeated zero or more number of times. Hence desired
regular expression is,

(00 ∪ 01 ∪ 10 ∪ 11)∗ = (00 + 01 + 10 + 11)∗.

Example 3.5 Determine the regular expression for the language L in which every string
contains at least one occurrence of 1, for Σ = {0, 1}.

Solution: The possible regular expressions can be, (0 + 1)∗1(0 + 1)∗.

It should be noted that there are more than one ways to obtain the language for the given
specifications. Accordingly, 0∗1(0+1)∗ and (0+1)∗10∗ are also the solutions for this problem.

Example 3.6 Given a language L = {w | w ∈ (0 + 1)∗ and w is of odd length}, determine
the regular expression.

Solution: The answers are: (0 + 1)(00 + 01 + 10 + 11)∗ and (00 + 01 + 10 + 11)∗(0 + 1).

3.4 Regular Languages

If R is a set of Regular Languages over some alphabet set Σ, then we define some relations
as follows:

Lecture 03: Jan. 13-14, 2020 3-5

1. φ ⊆ R,

2. {ε} ⊆ R,

3. {a} ⊆ R, for all a ∈ Σ, and

4. If L1 ⊆ R and L2 ⊆ R, then L1 ∪ L2 ⊆ R, L1 ◦ L2 ⊆ R, L∗

1 ⊆ R.

In other words, a language is regular if it is built using only the elementary languages and
operations of union, concatenation, and Kleene Star over them.

Theorem 3.7 The class of regular languages are closed under the operation of union, con-
catenation and ∗ (Kleene Star).

Proof: The theorem states that if L1 and L2 are regular languages, then so are L1 ∪ L2,
L1L2, L

∗

1
and L∗

2
.

The proof is direct in the definition of regular expressions. Let R1 and R2 be regular ex-
pressions corresponding to regular languages L1 and L2. Therefore, R1 ∪ R2, R1R2, R

∗

1

and R∗

2 are regular expressions as per the definition (3.1). The operations on regular sets,
R1∪R2, R1R2, R

∗

1 and R∗

2 produce the strings which belong to regular languages L(R1∪R2),
L(R1)L(R2), L(R

∗

1
), L(R∗

2
), respectively. This proves that, the regular languages are closed

under the operation of union, concatenation, and Kleene star. �

In addition, the regular languages are closed on intersection, complementation, and word-
reversal. These topics are discussed in the next chapters.

Creating regular expression for finite language is straightforward. Consider that there is
a finite language L (i.e., a language with only finitely many words). To make a regular
expression that defines language L, we simply insert plus sign between all these words. If
L = {a, b, ab, bb, ba} then corresponding regular expression is simply a+ b + ab+ bb+ ba.

Theorem 3.8 Every finite language is regular.

Proof: The word “finite” here means exactly n elements, for n ∈ N . This suggests proof by
induction.

The statement to be proved is - “for every n ≥ 0, every language having exactly n elements
corresponds to some regular expression”.

Basis Step: Consider n = 0, hence there are 0 strings. Therefore, the language with zero
number of strings is φ, which, according to the definition (3.1) corresponds to a regular
expression φ.

Induction Hypothesis: Let k (k > 0) be an arbitrary integer. Assume that any language
with exactly k elements is regular.

Induction step: We want to show that any language L with k + 1 number of elements is
regular. Let L be such a language. We may express L as a union of two languages L1 and

3-6 Lecture 03: Jan. 13-14, 2020

L2, where L1 has k elements and L2 has one element. By our inductive hypothesis, L1

corresponds to some regular expression r1 and let r2 is a regular expression corresponding
to L2. Hence, as per the definition (3.2) of regular languages, r1 + r2 is regular expressions
corresponding to the languages L1∪L2, which is L, having k+1 number of elements. Similar
way, we can construct all the languages of finite number of strings, and all these will be
regular. �

Example 3.9 All languages of finite length strings are regular.

The solution is left as an exercise.

3.5 Countable Sets

The countable sets or enumerable or denumerable sets are those sets elements can be counted.
For example, set N = {0, 1, 2, 3, . . .}. Thus any set, whose elements can be paired with
the elements of N (having bijection) is countable set. The set {2, 3, 1, 5, 7, . . .}, which is
exhaustively listed, can be paired with N as

{(2, 0), (3, 1), (1, 2), (5, 3), (7, 4), . . .}.

Similarly, the set of all words over {a, b} can be enumerated by systematically pairing all
the fixed length elements of N, followed with elements of next higher length, and so on, as
follows:

{(ε, 0), (a, 1), (b, 2), (aa, 3), (ab, 4), . . .}.

Both the examples above are of regular sets. Hence, we conclude that (these) regular sets
can be enumerated. In fact, a set of regular sets is always enumerable. Consequently, the
sets of regular expressions are also enumerable.

However, we know from chapter 1 that “set of subsets of enumerable set is not enumerable”.
This subset is all possible languages. Thus, given that, all languages are uncountable, and
Regular languages are countable, we can easily conclude that, there are many languages,
that are non-regular.

An alternate argument for the above is as follows: Each regular language corresponds to
a regular expression. All the regualr expressions can be exhaustively listed, by listing the
regular expressions in order of their size, and those of the same size can be listed lexico-
graphically. Thus regular expressions are countable. Hence, the regular languages are also
countable. However, we have studied that all possible languages are not countable as they
are exponential power over 2 of Σ∗. This, concludes that there are languages other than
regular languages.

3.6 Some applications of FA

The regular expression was first used as a description of finite state automata by Kleene.
He defined regular expressions and regular sets of sequences and proved that:

Lecture 03: Jan. 13-14, 2020 3-7

1. Any set of sequences recognized by a finite state machine is a regular set of sequences,

2. A finite state machine can be constructed to recognize any regular set of sequences
described by a finite regular expression. Later it was established that a regular ex-
pression characterizing the events recognized by a finite state machine can be obtained
directly from the state diagram.

3.6.1 Design of sequential circuits

There are software as well as hardware design related problems, which can be simplified by
automatic conversion of regular expression notation to efficient computer’s program imple-
mentation or some hardware circuit implementation. Finite automaton is an algorithmic
tool. A regular expression can be used for logic design with respect to sequential circuit, as
well as for operating system design with respect to process status and transitions.

In the design of sequential circuits, the first step consists of obtaining an unambiguous
description of the circuit behavior. For a certain class of problems, the language of regular
expressions greatly simplifies this first step of synthesis. In general, richer the language, the
easier it is to write the problem specification. It is possible to obtain state diagrams for
sequential circuits from such regular expressions.

A finite automaton can be used in conceptual realization of hardware components like flip-
flops, counters, adders and various combinational and sequential circuits. The following is
an example showing conceptual design of a sequential of a sequential circuit for 3-bit binary
counter.

Example 3.10 Consider a 3-bit binary counter (figure 3.1), which counts from 000 to 111,
going through 8 states q0 to q7. An input 1 every time causes the movement of FA to
next state and input 0 does not change a state. The counting restarts from state q0, which
corresponds to count 0 (binary 000), and state q7 is last state, corresponding to count 111.

q0 q1 q2 q3

q4q5q6q7 1 1 1

1

11 1

1

0 0 0 0

0000

Figure 3.1: FA for 3-bit binary counter.

3.6.2 Lexical analysis

One of the applications of finite-automata is to automatically generate lexical processors.
Here, a program accepts an input description of the multi-character items or of words
allowable in a language, given in terms of a subset of regular expressions. The output of the
systems is a lexical processor, which reads a string of characters and combines them into the

3-8 Lecture 03: Jan. 13-14, 2020

item as defined by the regular expression. Each output item is identified by a code number
together with a pointer to a block of storage containing the characters and the character
count in the item.

The processors produced by this program are based on finite state machines. Each state
of a “machine” corresponds to a unique condition in the lexical processing of a character
string. At each transition, appropriate actions are taken based on the particular character
read.

The functioning of a compiler can be described in the following four logically separable
steps:

1. Read the characters of the source language and assembles them into meaningful words
or items (lexical analysis);

2. Group the “words” of the language into phrases and sentences for analysis (parsing);

3. Extract the meaning of the source language sentences (modeling) ;

4. Produce the appropriate object code.

Step 4, in the general case, represents the algorithm for the particular problem and as such is
not amenable to general solutions. Step 3, the analysis of the parsed language, again is not
amenable to general solutions. Step 2 is much more amenable to generalized solution. Very
general systems exist for producing special-purpose processors for parsing language. Such
automatically produced parsers are being used in compilers and other computer problem-
solving applications.

With some exceptions, lexical properties have been assigned a very minor role in computer
languages, and lexical processing has been incorporated as an incidental part of the syntactic-
analysis programs. There are some good reasons for separating these functions both logically
and programmatically.

• A large portion of compiler’s time is consumed in lexical analysis, making it essential
that this function be as efficient (fast) as possible.

• The development of effective languages requires attention to the lexical as well as
the syntactic properties of the languages. Separating the two functions promotes
recognition of this fact, and allows the functions to be investigated independently.

• Separation allows the development of systems for automatic syntactic and lexical anal-
ysis. The third point is particularly important, since the existence of such systems
allows the language developer or compiler writer to experiment with various lexical
and/or syntactic schemes without the burden of the immense programming times
which would otherwise be required.

3.6.3 Lexical analyzers

The tokens of a programming language are expressible in the form of regular sets. For
example, for the C language the identifiers are expressible as sequence of letters in upper
or lower case, followed by any combination of digits, underscores and letters. Optionally an
underscore may precede all above characters. Thus, a C identifier can be represented as:

Lecture 03: Jan. 13-14, 2020 3-9

{ }∗{letter} ◦ {letter ∪ digit ∪ }∗

When expressed as regular expression, the above becomes,

∗(letter) ◦ (letter + digit+)∗

A somewhat similar but specific regular expression exits for keywords and data units in the
programs. Therefore, a FA can be used to recognize different tokens in the programming
languages which are different strings constituting the sequence of symbols used to form
identifiers, operators, keywords, data sets, etc. The corresponding programs are called
Lexical Analyzers and the process involved is called Lexical Analysis.

The programs, called Lexical Analyzer Generators, receive the input as a sequence of regular
expressions describing the various types of tokens in a particular language, and produce a
single FA, which recognizes all these tokens. The lexical analyzer generator converts the
regular expressions to NFA (non-deterministic FA) with null transitions. These NFA are
converted to DFA for implementation purpose. The DFA so constructed has number of
final states, where each final state indicates some particular token is found. These lexical
analyzers are produced directly in the form of object codes or in some form of high-level
language code, which is later translated into machine language.

The lexical analyzers are used for completion of first phase of compilation process called
Lexical Analysis, which identities the tokens in the input source program. The output of
the Lexical Analysis is in form of tokens in some kind of representation, which is passed
to next phase of compilation called syntax analysis or parsing. This phase assembles the
tokens together and identities then in the form of statements as well as stores the statement
in the form of a tree, called syntax tree.

