
4CS4-6: Theory of Computation (Nondeterministic finite automata)

Lecture 04: Jan. 16 & 20, 2020

Prof. K.R. Chowdhary : Professor of CS

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal

publications. They may be distributed outside this class only with the permission of the

Instructor.

4.1 Introduction

Mathematics never saw much of a reason to deal with something called nondeterminism. It
works with values, functions, sets, and relations. In computing science, however, nondeter-
minism has been an issue from the very beginning, if only in the form of nondeterministic

Turing machines or nondeterministic finite state machines. Nondeterminism arises in a
natural way when discussing concurrency, and models of concurrency, which typically also
model nondeterminism. There are also numerous variants of process languages and algebra,
event structures, state transition systems, which concerns to nondeterminism.

In terms of modeling, nondeterminism may be considered a purely operational notion. How-
ever, one of the main reasons for considering nondeterminism in computer science is the need
for abstraction, allowing one to disregard irrelevant aspects of actual computations. Typ-
ically, we prefer to work with models that do not include all the details of the physical
environment of computations such as timing, temperature, representation on hardware, and
the like. Since we do not want to model all these complex dependencies, we may instead rep-
resent them by nondeterministic choices. The nondeterminism of concurrent systems usually
arises as an abstraction of time. Similarly, nondeterminism is also a means of increasing
the level of abstraction when describing sequential programs, and as a way of indicating a
“don’t care” attitude as to which among a number of computational paths will actually be
utilized in a particular evaluation.

4.2 Model of Nondeterministic Finite Automata

All the computer programs as well as the model of Finite Automata (FA) introduced in the
previous chapter are models of determinable computation. That is, in every configuration
it is determined without any ambiguity as what will happen in the next computation step.
Hence, a program or deterministic finite automata (DFA) can always determine unambigu-
ously the computation over an input string x.

In contrast, a nondeterministic computation allows in each configuration a choice from
finitely many actions. This has the consequence that a nondeterministic program can have
many different computations on the same input. The only requirement is that one of them
should ultimately yield correct result. This corresponds to an artificial rule: a nondeter-
minictic program always chooses a correct computation. A choice from several possibilities

4-1

4-2 Lecture 04: Jan. 16 & 20, 2020

is called nondeterministic decision. The acceptability criteria of NFA (Non-deterministic
Finite Automata) is as follows: with an alphabet set Σ, a string w ∈ Σ∗ leads to a sequence
of configurations, where one of the configuration is an accepting configuration.

Although, an NFA being model of a nondeterministic program does not seem to be useful
for practical purposes, but the study of nondeterminism will certainly contribute to our
understanding of the nondeterministic computations.

Like DFA, an NFA is also a five tuple represented by,

M = (Q,Σ, δ, s, F) (4.1)

where,

Q is finite set of states,

Σ is finite set of alphabets,

δ is set of transitions,

s is start state, and

F is set of final or accepting states.

q0
q1

q2q3

q4

a b a b b a

Read head head movement

Input tape

Finite control

Figure 4.1: Nondeterminictic finite automata.

Since next state after a transition in an NFA is a state-set instead of a single state, and there
can be 2Q state sets for Q states, a state in an NFA is member of 2Q states. Its transition
function is defined as,

δ : Q× Σ 7→ 2Q. (4.2)

Due to the same reason the final states are also members of 2Q or F ∈ 2Q, and F ⊆ Q.
An NFA (Figure 4.1) consists infinite tape holding a string w ∈ Σ∗, and a read head, which
can move to one direction only and reads the symbols on tape, square by square. The finite
control of NFA in the Figure 4.1 indicates that in a particular configuration the machine
has taken a move into two states together, i.e., q1 and q2, accordingly the next state is a set
shown as {q1, q2}.

In an NFA the next state in a move is always a set, of size greater or equal to one. Hence,
DFA is a special case of NFA, and the NFA is a generalized case of DFA. Thus, in NFA we
may have,

Lecture 04: Jan. 16 & 20, 2020 4-3

δ(q, a) = {q′, q′′, q′′′} ⊆ Q. (4.3)

Example 4.1 Figure 4.2 shows the transition diagram of an NFA. When an input symbol

a ∈ Σ read at state q0, the next state is δ(q0, a) = {q1, q2, q0}, where all the three states

are equally likely. This is because after reaching to state q1 the NFA can move to state q2
without an input, and from there it can come to state q0 again by ε-transition.

q0 q1 q2
a ε

ε

Figure 4.2: Transition diagram for an NFA.

An NFA accepts a string w if it leads to a sequence of moves with at least one sequence
has the end element a final state. The string is rejected if there are no possible sequences
of moves that can lead to a final state.

The equation (4.3) indicates that next state is a set of states in which there can be maximum
|Q| states at one time. For example, if there are three states Q = {q0, q1, q2} in an NFA, then
the total number of next states can be 8 and a subset can have maximum three states. The
possible sets of states in this case can be: {}, {q0}, {q1}, {q2}, {q1, q2}, {q2, q3}, {q1, q3},
{q1, q2, q3}.

A distinguishing feature of an NFA is - it can cause a transition without any input, that is,
a null (ε) input can also cause a transition. Hence, the input symbol in NFA is member of
Σ ∪ {ε}. The general transition function δ for the NFA can therefore be defined as,

δ : Q× Σ ∪ {ε} 7→ 2Q (4.4)

The extended transition function δ∗ for an NFA can be defined in the same lines of DFA,

δ∗(qi, w) = Qj, (4.5)

where Qj ⊆ Q, w ∈ Σ∗, and Qj is set of all the possible states in which NFA may exist
when it had started at state qi and have completely read the string w. Thus, the language
accepted by an NFA is,

L(M) = {w ∈ Σ∗ | (q0, w) ⊢
∗ (Q′, ε)} (4.6)

where Q′ = {..., qf , ...} ∈ 2Q, qf ∈ F .

The non-deterministic automata are not model of real computers but is simply useful no-
tational generalizations of finite automata. They are useful because they greatly simplify
the description of finite automata. We will show later that an NFA is equivalent to DFA
and at the same time it appears in much simplified form. When an NFA has more than one
possible next state, it can be viewed as more than one DFA working in parallel.

4-4 Lecture 04: Jan. 16 & 20, 2020

4.3 Properties of an NFA

We will see that, there are some qualities of NFA, and that is why at the initial state a
system is constructed as an NFA, and then later is is converted into DFA. Subsequently, the
DFA is simplified by minimization.

4.3.1 NFA is Simpler

Designing an NFA is simpler than DFA, because an NFA is far less complex than a DFA.
Consider the language

L = {w | w ∈ (ab+ aba)∗}

with alphabet set Σ = {a, b}. The DFA that recognizes language L is shown in figure 4.3.
We note that, the regular expression and the corresponding language appear to be simple.
However, the corresponding deterministic finite automaton is complex. It can be shown
that it is not possible to obtain a DFA of less than five states for this regular expression.

q0 q1 q2

q4

q3
a b a

a

b a b

a|b

b

Figure 4.3: DFA for language (ab+ aba)∗.

q0 q1

q2

a
b

a

b

Figure 4.4: NFA-I for language (ab+ aba)∗.

The language strings generated by the regular expression (ab+ aba)∗ are also recognized by
an NFA shown in figure 4.4. However, there also exist paths in NFA using which the same
string cannot be recognized. For example, for string aba, the path q0, q1, q2, q0 recognizes
it. But q0, q1, q0, q1 does not. The requirement for recognition of a string by NFA is that
there should be some path(s) available for a walk-through that ultimately lead to a final
state when complete string is read.

For an NFA, unlike the DFA, it is not necessary that all transitions corresponding to inputs
are available at each state. For example in figure 4.4, at state q0 and q2 input b is not

Lecture 04: Jan. 16 & 20, 2020 4-5

accepted. Hence δ∗(q0, abb) = φ, as there is no state available after receiving the string
abb. Such configurations are called dead configurations. We note that, in spite of dead
configurations, the NFA in figure 4.4 is a much simpler than the DFA shown in figure 4.3.

Equally simpler NFA is shown in figure 4.5, which can also recognize the language of regular
expression (ab + aba)∗. This NFA includes a null transition at state q2, i.e., transition
occurring in the absence of any input.

q0 q1

q2

a
b

a

ε

Figure 4.5: NFA-II for language (ab+ aba)∗.

4.3.2 An NFA simulates more than one DFA in Parallel

Computers are deterministic machines and their final states are predictable if their initial
state and input are known. However, for an NFA as computing model, every next state is a
set (often of more than one) of states, thus NFA is not predictable. This drawback of NFA
is blessing as it helps in faster problem solving by carrying many states together.

Any problem solution requires the exploration of number of states. All these states put
together is called state space. To solve a problem, we exhaustively search this state space to
find out if it leads to final state. In the process of searching, we may sometime reach to a
state from where solution is not possible. In that case, we backtrack to some previous state
and again search in the state space. This backtrack might repeat number of times depending
on the size of state space and nature of the problem being solved [floyd97].

In an NFA, while searching the state space, we carry on number of states together, and one
or more of them may lead to the final state, and hence to the solution. Since, backtracking
is not required in an NFA, it may lead to a faster and efficient solution.

Example 4.2 For the NFA shown in figure 4.6, find out whether the string w = aab is

accepted by this NFA.

q0 q1 q2

a

b

a b

q3

b a|b

a

a|b

Figure 4.6: NFA.

4-6 Lecture 04: Jan. 16 & 20, 2020

We show the sequence of configurations through which this NFA moves when it reads the
input.

(q0, aab) ⊢ ({q0, q1}, ab)

⊢ (q0, ab) ∪ (q1, ab)

⊢ ({q0, q1}, b) ∪ (q3, b)

⊢ (q0, b) ∪ (q1, b) ∪ (q3, b)

⊢ (φ, ε) ∪ ({q1, q2}, ε) ∪ {{q1, q3}, ε}

⊢ (q1, q2, q3), ε)

Figure 4.7, which shows the transitions in NFA of figure 4.6, which gives the impression of
more than one DFA operating in parallel.

a

b

a

a

a

a

b

φ

b

b

q0

q0

q1

q1

q0

q3q3

b

q1

q2

q1

1st

transition transitiontransition
2nd 3rd

Figure 4.7: Transitions of NFA of figure 4.6 for input aab.

